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0 Introduction

Today’s world is full of software and communication systems in which processes inter-
act with each other throughout. For our everyday life, it is crucial that such processes
run safely and that they do not exhibit unexpected behaviour. In order to define and
reason with such philosophical concepts as safety and well-behavedness, communi-
cation systems are cast into the mathematical framework of labeled transition systems
(LTS), in which steps of computation or communication are mathematically formalized
and made explicit.

A process calculus constitutes a popular way to specify labeled transition systems for
communication and concurrent computation. Indeed, states of an LTS for a process
calculus are interpreted as processes running in parallel and passing messages. A
process calculus can be viewed as a high-level programming language: it consists of
a syntax, specifying how the structure of a process is written, along with a semantics,
defining execution for processes by describing the way syntax can transform over time.
Two prominent examples of process calculi are CCS [13] and the π-calculus [14, 21],
the latter being an extension of the former by also allowing communication channels
themselves to be passed around.

The syntax of a calculus is given by providing a context-free grammar, and a semantics
is then given by providing a collection of rules that specify appropriate transitions
from states to other states. The rules for transitions in a process calculus specify the
behaviour of the LTS, and different contexts ask for different specifications. Indeed,
many different kinds of specifications can be formulated, and many different kinds of
process calculi exist [17]. Even ‘the’ π-calculus should rather be thought of as a family
of calculi, since many different variants exist by adding, omitting, or varying certain
rules of syntax and behaviour.

In the present thesis we are interested in a uniform look at different process calculi.
Hence, we consider formats to which rules of a specification can (or should) adhere,
meaning that the rules should be of a certain shape. In doing so, we study a whole
class of process calculi can be specified by rules in a given format. Taking this ap-
proach, we start to see some important intrinsic properties of the class of calculi that
are allowed by the formats. The GSOS rule format by Bloom et al. [4], for example, en-
sures congruence of bisimilarity. Although often tedious to prove, this property is much
sought after, as it enables us to reason about processes in a compositional way.

The GSOS rule format was originally developed within the context of CCS and sim-
ilar calculi, such as CSP. Staton and Fiore [7] have proposed a new rule format that
accounts for name binding (locally instantiating new names in a process) and name
substitution, as required by many modern name-passing process calculi, such as the
π-calculus. Their format can be considered quite restrictive, but it does ensure con-
gruence of bisimilarity.

A different format for name-passing process calculi, proposed by Aceto et al. [1], en-
sures that binding names in transition labels can be locally renamed to “suitably fresh”
names. That is, we can rename the bound names in the label with names that do not al-
ready occur locally. The format is less restrictive than the GSOS-like format by Staton
and Fiore [7], but it does not guarantee congruence of bisimilarity.
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The purpose of this thesis is to discuss the different intents and outcomes, advantages
and disadvantages regarding the two formats we discussed above, and how they relate.
Most of the theory in this thesis is well established in the literature. Section 4, however,
contains results that are used in [7], but have not been made explicit or proven. There,
we show that, under certain assumptions, we can model name binding in transition
system labels using name abstraction in the corresponding coalgebra in the category
of nominal sets. We then discuss how this relates to the notion of alpha-conversion of
residuals proposed in [6, 24].

The structure of this thesis is as follows: in Section 1, we familiarize the reader in
an informal way with some basic notions such as transition systems and their speci-
fications, with the importance of congruence of bisimilarity, and with name binding
and substitution of names. After that, in Section 2, we formally introduce transition
systems and their foundation in category theory. Readers not familiar with category
theory can turn to Appendix A for an introduction of the central categorical notions for
this thesis. In Section 3, we develop the theory of nominal sets, which is useful for the
notions of name bindings, freshness, and name substitutions. In Section 4, we discuss
transition systems of nominal sets, and discuss some properties they should pursue.
Finally, in Section 5 we make some concluding remarks about the two different formats
and how they relate, and discuss possible further lines of research.
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1 Problem Statement

In this section we familiarize the reader with transition systems and process calculi.
We also explain why congruence of bisimilarity is an important property for process
calculi, and we indicate some complications that arise when working with name bind-
ing, and name substitution. Finally, we reiterate the intention of this thesis.

1.1 Models of concurrency and communication

The leading example of a process calculus for modeling concurrent computation and
communication is the Calculus of Communicating Systems (CCS) [13]. In CCS, a process
modeled as a black box that interacts with the outside world by performing synchro-
nized communication with other black boxes.

Consider, for example, a typical interaction with a coffee machine at the office. The in-
teraction involves two autonomous actors: the person and the machine, both referred
to as processes. From the viewpoint of the person, a coin is given to the machine, a
choice between coffee or tea is made by pressing a button req-cof or req-tea, and then
the machine gives you the drink accordingly. This process from the person’s perspec-
tive can be graphically represented as

P1
coin // P2

req-cof // P3
coffee // P4

Here, the boxes represent states in which the person may find itself, and the arrows
indicate transitions to subsequent states. For instance, a process (person) in state P1 is
ready to output (indicated by the overlining) a coin, and transition to state P2, which,
in turn, is ready to output the choice of requesting a cup of coffee. Finally, P3 is ready
to receive coffee, after which it terminates (one ought to treat the analogy of the person
as a process loosely when talking about termination).

The dot ‘.′ is often used to represent sequential actions, and so the process P1 is written
down as

P1 , coin . req-cof . coffee . nil

where nil is a terminated process. Here, nil is preceded by three action prefixes.

Communication can only happen if there are two or more parties involved, so let us
imagine what should happen at the side of the coffee machine:

M3

coffee

xx
M1

coin //M2

req-cof 33

req-tea ++M4

tea

ff

There are no terminated processes here: every state is ready to do something. This
reflects the fact that a coffee machine should always be operational, even after having
served one person. The state of M2 is even ready to accept two inputs: either a request
for coffee or a request for tea. This choice is nondeterministic from the viewpoint of the
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machine. We get a recursive definition that also involves a ‘+′ for this nondeterministic
choice:

M1 , coin . (req-cof . coffee . M1 + req-tea . tea . M1)

Since P1 is ready to output a coin (P1
coin−−−→ P2), and M1 can input a coin (M1

coin−−−→M2),
the two can interact if they are executed in parallel: P1 ‖M1

τ−→ P2 ‖M2. The ‘ ‖′ here
denotes parallel composition, signifying that we run both operands concurrently. The
label τ indicates that this transition happens silently, meaning it involves no specific
names or labels, as the two processes are synchronized on a shared channel. (It might
have been more clear if there actually was no name or label, but we give the silent
transition a special label in order to uphold the name labeled transition system...)

Ideally, we want a calculus such as CCS to allow us to model many, possibly infinite
different kinds of processes, and in practice, they do. For each one of these infinite
processes, then, how do we know what transitions are allowed for it? Even though the
number of processes itself is infinite, the way we write processes is defined by a finite
amount of rules. We saw, as an example for a syntax rule, that if P andQ are processes,
then P ‖Q is also a process.

For all the syntax rewrite rules that were used to obtain the syntax of a process, there
was one rule used last to write it down. By providing a collection of behavioural rules
that apply for the syntax rule that was used last, we can specify what transitions are
appropriate in the system. A common example of such a rule is the rule for synchro-
nization that we saw in the example of the coffee machine:

P
α−→ P ′ Q

α−→Q′

P ‖Q τ−→ P ′ ‖Q′
(1)

Written like this, using any P ,P ′,Q,Q′ and α, if the transitions above the line (the
premises) are valid, then the transition below the line (the conclusion) is also valid. This
way, a rule specification can inductively define a transition system. Not all formats in-
duce well-defined transition systems, as we can formulate paradoxical or contradictory
rules.

1.2 Processes that are equal

So this is how we can mathematically formalize communication protocols of getting
coffee from a machine in a labeled transition system. In order to reason about topics
such as safety and well-behavedness of more complex systems, it is important to talk
about equality of such systems. How should we define an equality of processes?

It must be said that equality of processes should be concerned more with execution
than with syntax. In P

α // Q αgg , the states P and Q seem to be distinct. How-
ever, both processes can only perform the sequence of actions α,α,α, . . . ad infinitum,
which are called traces. When we look at their behaviour, therefore, they seem equal.
This kind of equality of processes in an operational sense is called trace equivalence of
processes.

Back to our coffee machine. Notice that, for each time a person interacts with the coffee

machine, the state M1 has two possible traces, namely M1
coin−−−→ M2

req-cof
−−−−−−→ M3

coffee−−−−−→
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M1 and M1
coin−−−→ M2

req-tea
−−−−−−→ M3

tea−−−→ M1. But if we were to prepone the decision for
either coffee or tea to the moment of inserting a coin –a poor choice of coffee machine
design, but alas–, we get the following labeled transition system:

M ′2
req-cof //M ′3

coffee
ooM ′1

coin
77

coin ''
M ′4 req-tea

//M ′5

tea

oo

Notice that M1 and M ′1 are trace equivalent (write M1 ∼ M ′1). So, do we want to say
that M1 and M ′1 are equal as processes?

Arguably not: a person that needs her daily dosage of caffeine might run into trouble
when using the coffee machine represented by M ′1. Indeed, applying a common rule

for synchronization (1), P1 ‖ M ′1
τ−→ P2 ‖ M ′4 is a valid transition. But M ′4 can only

accept a request for tea, whereas P2 absolutely needs coffee. It would seem that both
parties are at an impasse and cannot communicate further. This unfortunate situation
cannot occur with our first model of the machine, represented by M1. Although the
processes on their own are able to execute the same things, when put in the context
of parallel composition with P1, different possible behaviours arise. This means that
trace equivalence need not be a congruence, and is therefore a questionable choice for
equality. Congruence means precisely that if M1 is ‘equal’ to M ′1, then, if we were
to put M1 in a certain context, it will be ‘equal’ to M ′1 put in the same context. The
context here can really mean anything involving some operation: not only parallel
composition, but also nondeterministic choice (P + Q) and action prefixing (α . P ).
This property of congruence for equality is only natural when we consider congruence
of equality of numbers, e.g. 1 + 1 = 2, so therefore 3 · (1 + 1) = 3 · 2.

Instead of trace equivalence, bisimilarity is often used to equate processes. Two bisim-
ilar states P and Q always satisfy the following property: if P can make a labeled tran-
sition to P ′, thenQ can make a labeled transition (with the same label) to some process
Q′ such that P ′ and Q′ are again bisimilar. The process M2 can accept requests for cof-
fee and tea, butM ′4 can only accept requests for tea, soM2 andM ′4 cannot be bisimilar.
But then, by the property we just described, also M1 and M ′2 cannot be bisimilar. So,
could bisimilarity be a good relation to use for equality of processes? That is, do we
have congruence of bisimilarity?

To reason about processes in a compositional manner, congruence of bisimilarity is a
paramount property for labeled transition systems. However, proofs that the property
holds often are long and tedious. To avoid such proofs, Bloom et al. [4] invented
the GSOS format for rules of behaviour such as (1). A rule format restricts rules to
a certain shape, with the purpose of obtaining desirable properties. The GSOS rule
format is one of many formats [16, 2], and ensures that the specification induces a
well-defined transition system that moreover enjoys congruence of bisimilarity. This
property comes free of proof, since the format already guarantees it!

In further research, Turi and Plotkin [23] formalized specifications in the GSOS format
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as abstract rules and showed how they can be seen as rigid mathematical objects (dis-
tributive laws) defined in the language of category theory. This way, CCS can be seen
as a distributive law between endofunctors on the category of sets.

1.3 Receiving data

There are some limitations of CCS. Our coffee machine, for example, can only accept
requests for tea and coffee. Communications involving arbitrary data can easily be
imagined (e.g., an amount of money, a number for a menu option, etc.), but CCS, in its
original design, does not support the transfer of data, only synchronization of names
such as coin.

In contrast, the π-calculus [14, 21] is a process calculus that does support transfer of
data! In the π-calculus, we could write a person (process) that outputs the choice for
cappuccino through a channel x as P , x〈cappu〉 . P ′ (angled brackets signify out-
put) and a coffee machine accepting such a choice through the same channel x as
M , x(y) . M ′ (round brackets signify input). Here, x is the channel through which
person and machine communicate, y is the name of an input variable for the machine,
and P ′ and M ′ are processes that describe further communication between the two
parties.

In the π-calculus, processes can synchronize too, but there is an additional element to

it. The two transitions P
x〈cappu〉
−−−−−−−−→ P ′ and M

x(y)
−−−→M ′ together become

P ‖M τ−→ P ′ ‖M ′{cappu/y} (2)

The extra element here, indicated by the curly brackets, is that every occurrence of the
variable y inM ′ should be substituted with the name cappu after the synchronization is
performed. This way, our model makes sure that the coffee machine actually receives
the choice of the person!

1.4 Bound to be free

The action prefix x(y) in the process x(y) . M ′ above instantiates a new piece of data y
for M ′. The variable y here is an example of a binding name: the name occurs bound
within the scope of M ′. Other binding constructs besides input exist. For exam-
ple, in the π-calculus, a term (νx)P creates a new name that can be used within the
scope of the process P , much like λx . M in the λ-calculus creates a new name x with
scope M.

A substitution such as {cappu/y} is required to be capture-avoiding: it should leave all
binding names in M ′ unaffected, even though we may locally also write y for them.
A capture-avoiding substitution hence only affects free names, i.e., names that do not
occur under some binding, such as input. It is often written that when names of such
a substitution do coincide, then the binding name can always be ‘silently renamed’.
Whether a name is called free or bound, depends on the context: in M , x(y) . M ′, for
instance, y occurs bound, but in M ′ (without the input action prefix after a transition

M
x(y)
−−−→M ′), it occurs free.
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For a binding name, this ‘silent renaming’ means that one can actually choose to write
down any name, as long as it does not conflict with other, already existing free names
within the same scope. A process x(y) . x〈y〉 . nil, for example, can and should be
considered equivalent to x(a) . x〈a〉 . nil, since they both represent a process where a
free channel x just immediately sends back whatever it receives. Why should it matter
what name we give to what it receives? This notion of equivalence through renaming
bound names is referred to as α-equivalence (denoted ≈α). The formal mathematical
construction that models binding names through α-equivalence is called abstraction of
names.

Example 1.1. LetQ , (x(y) . x〈y〉 . nil) ‖ (z〈y〉 . nil), which has two parallel compo-
nents, the first of which has a binding name y, instantiated upon input through x.
The second parallel component has a free occurrence of y. We have

Q{a/y} = (x(y) . x〈y〉 . nil) ‖ (z〈a〉 . nil),

where the free occurences of y have been substituted, but the bound ones have
not. However, note also that Q ≈α (x(a) . x〈a〉 . nil) ‖ (z〈y〉 . nil), since, by α-
equivalence, we can rename the binding name y however we like (except as x).

When writing M = x(y) . M ′, α-equivalence says that any choice of name for y will do
(renaming y in M ′ accordingly). Any name? No, it has to be suitably fresh, meaning it
should not already occur in the relevant context. We want to rule out the name x, for
instance, because it is already the (free) name of the channel.

The notion of α-equivalence also extends to names in transition labels: consider two
π-calculus processes

P1 , x(a) . x〈a〉 . nil and P2 , x(a) . x〈a〉 . x〈d〉 . nil,

both with one binding name a. Note that P2 has a free name d that P1 does not have.

Since P1 is α-equivalent to x(d) . x〈d〉 . nil, we have that P1
x(d)
−−−→ x〈d〉 . nil is a valid

transition. However, the situation is different for P2: the transitions

P2
x(a)
−−−→ x〈a〉 . x〈d〉 . nil and P2

x(d)
−−−→ x〈d〉 . x〈d〉 . nil

lead to two distinct processes. Ideally, the second transition should be disallowed. In
other words, the binding name a in the label should be allowed to be renamed only to
suitably fresh names. This means exactly that the name in the label should be a binding
name in the target. This is formalized as alpha-conversion of residuals by Aceto et al.
[1], a residual being the pair consisting of the label and the target of a transition.

1.5 Contribution and related work

The π-calculus has the advantage over CCS that it allows us to pass around names
through channels between processes. However, the GSOS rule format is not adequate
for name passing process calculi [4], since

(i) the processes in the calculus need to be defined up to α-equivalence,
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(ii) rules for behaviour often have side-conditions for freshness of names, and

(iii) bound data in the label should be suitably fresh.

These problems have not been accounted for in the original GSOS rule format and in
the category theoretical approach by Turi and Plotkin [23], which used distributive
laws between endofunctors on the category of sets.

In this thesis, we focus on the problem mentioned in (iii) and compare the two formats
in [1] and [7] that tackle this problem. The latter is a variant of the GSOS rule format,
appropriately adjusted for name binding and substitution. This format was developed
to ensure that the specification induces a name-passing transition system that satisfies
congruence of bisimilarity. The authors construct an abstract rule from a transition
system specification in a general setting, and show that this is a distributive law under
the condition that the rules are in their format. The coalgebraic structure for the initial
bialgebra for this distributive law is now the labeled transition system of interest, and
it enjoys congruence of bisimilarity.

In [1], the authors formulate a property called alpha-conversion of residuals [6, 24]: any
bound name in a label can be renamed to another name that is “suitably fresh”. If, for

example, P
a(b)
−−−→ P ′ is a valid transition with b a bound name, then P

a(c)
−−−→ P ′{c/b} is

also a valid transition for every c that is fresh in P ′. A transition system satisfying this
property is called a nominal transition system (NTS) in their work.

In this thesis, we argue that the interpretation of “suitably fresh” may better also in-
clude freshness for the source of a transition, rather than just for the target and the label
of the transition. Indeed, Staton & Fiore require binding names to be globally fresh,
and they claim that this corresponds exactly to coalgebraic structures using abstrac-
tion of names. We elaborate on this claim and discuss its relation to nominal transition
systems [1].

Transition systems that support name binding and substitution are established by us-
ing the theory of nominal sets [18]. Nominal sets are structures that allow us to for-
malize α-equivalence, freshness, and name substitution. Formats rely heavily on this
theory of nominal sets, and so will the content of this thesis.
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2 Distributive Laws

In this section we look at transition systems and how they arise concretely from their
specifications. In a more abstract context of category theory, transition systems are
coalgebras (Section 2.1), their syntax can be described by algebras (Section 2.2), and
combined they form bialgebras. Transition system specifications (Section 2.3) can be
seen as distributive laws (Section 2.4) between endofunctors describing syntax and
behaviour. Bialgebras for distributive laws satisfy congruence of bisimilarity (Sec-
tion 2.5), and the coalgebra that is part of the initial bialgebra for a distributive law
is the transition system of interest (Section 2.6). All of this is well-documented theory,
see for example [3, 10].

We need basic notions from category theory to talk about (co)algebras. A reader not
familiar with this is strongly advised to turn to Appendix A.

2.1 Coalgebras for System Behaviour

Lists and trees are well-understood examples of inductive types, used for storing and
manipulating finite amounts of data in computer programs. There are many situa-
tions, however, where we require data to carry an infinite structure. For example,
certain verification techniques involve automata that accept infinite streams. Streams
are coinductive types that are to be thought of as unending lists. Stream systems are the
mathematical models that we use to study these data structures.

Definition 2.1. A labeled stream system is a triple (X,L,δ), where X is a set of states, L
is a set of labels, and δ : X // L×X is the transition function.

If δ(x) = (a,y), then we say that x can make a transition to y with label a ∈ L. It
is customary, and often convenient, to use arrow notation for transitions. That is, if
δ(x) = (a,y) we may omit the transition function δ by writing a stream literal x

a−→ y,
where x and y are the source and the conclusion of the transition, respectively. Note the
graphical distinction between // (for morphisms such as functions and functors)
and→ (for stream transitions).

Example 2.2. Let X = {u,v,w} and L = {a,b}. Define δ : X // L×X by δ(u) =
(a,u), δ(v) = (a,w), and δ(w) = (b,v). There are three transitions in this system,

written as the literals u
a−→ u, v

a−→ w, and w
b−→ v:

u

a

��
v

a
&&
w

b

ee

Here, u is a state that produces the constant stream (aa . . .), repeating the same
label a ad infinitum. The states v and w produce the alternating streams (abab . . .)
and (baba . . .).

The behaviour of stream systems can be described coalgebraically.
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Let B : C // C be an endofunctor on a category C.

Definition 2.3. A B-coalgebra is a pair (X,β), where X is called the carrier, which is an
object of C, and βX : X // BX is a morphism of C called the B-coalgebra structure.

We will use notations β : X // BX, X
β
// BX, and (X,β) interchangeably to refer

to B-coalgebras, or sometimes even just β if X and B are clear from the context.

Example 2.4. In Example 2.2, the pair (X,δ) with X = {u,w,v} is an L-coalgebra.
Here, L : Set // Set is the functor LY = L×Y with L = {a,b}.

In fact, any labeled stream system (X,L,δ) as in Definition 2.1 is an L-coalgebra for
the functor L = L× (−). The set X is the carrier, and the coalgebra structure is just the
transition function δ.

For a given endofunctor B, the collection of B-coalgebras forms a category, denoted
B-Coalg. A morphism between B-coalgebras β and γ is a morphism f : X // Y in
C between the carriers X,Y that respects the coalgebra structure. That is, it makes the
following diagram commute:

X
f //

β
��

Y

γ
��

BX
Bf // BY

There is an obvious forgetful functor UB from B-Coalg to its underlying category C
(giving the carrier set).

Final or initial B-coalgebras are final or initial objects of B-Coalg respectively. The
unique morphism from a B-coalgebra to the final B-coalgebra (if it exists) is called the
coinductive extension.

The following lemma will be useful later:

Lemma 2.5. Let B : C // C be an endofunctor on C. An initial object A of C yields
a unique coalgebra structure a : A // BA which is an initial B-coalgebra.

Proof. By initiality of A we get a unique coalgebra structure a : A // BA. This coal-
gebra structure is initial: for any β : X // BX, there is a unique arrow f : A // X
by initiality of A. This is a coalgebra morphism, since Bf ◦a = β◦f : A // BX, again,
by initiality of A.

Example 2.6. Let L be a set of labels and LX = L×X be an endofunctor on Set.
Recall that Lω denotes the set of streams with elements from L. Then Lω carries
a final L-coalgebra structure z given by z : (l0l1l2 . . .) 7→ (l0, (l1l2 . . .)). The first
component Lω // L is often called hd (the head of the stream) and the second
component Lω // Lω is called tl (the tail of the stream).
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To see that this structure is final, consider an arbitrary L-coalgebra (X,β). We
have to define a (unique) function fβ : X // Lω such that the diagram

X
!fβ //

(β0,β1)=β
��

Lω

z=(hd,tl)
��

L×X
idL×fβ// L×Lω

commutes. Observe that we must have (hd ◦ fβ)(x) = (idL ◦ β0)(x). In words, the
first element l0 = (hd ◦ fβ)(x) of the stream fβ(x) is β0(x).
For the second and third element we have

l1 = (hd ◦ tl ◦ fβ)(x)
= (hd ◦ fβ ◦ β1)(x)
= (idL ◦ β0 ◦ β1)(x)
= β0(β1(x))

l2 = (hd ◦ tl ◦ tl ◦ fβ)(x)
= (hd ◦ tl ◦ fβ ◦ β1)(x)
= (hd ◦ fβ ◦ β1 ◦ β1)(x)
= (idL ◦ β0 ◦ β1 ◦ β1)(x)
= β0(β1(β1(x)))

More generally, for every i ∈ N, we have li = β0(βi1(x)). Here, βi1 stands for re-
peated application of the function β1. Now, the function

fβ : x 7→ (l0l1l2 . . .), where li = β0(βi1(x))

is exactly the function we need to show that the structure z for Lω is final.
We refer to the unique fβ(x) = (l0l1l2 . . .) as the stream that x produces.

The coinductive extension maps the behaviour of a B-coalgebra to the final coalge-
bra. Behavioural equivalence between two coalgebras is obtained by looking at the
behaviour in the final coalgebra, by use of the coinductive extensions:

Definition 2.7. Assuming a final B-coalgebra (Z,z) exists, let (X,β) and (Y ,γ) be B-
coalgebras and let fβ and fγ be their coinductive extensions to the final coalgebra (Z,z).

Behavioural equivalence between β and γ is the pullback of the cospan X
fβ // Z Y

fγoo

in C.

The fact that behavioural equivalence is part of a pullback square means that it is a

span X R
π1oo π2 // Y in C and the following diagram is a pullback:

R

π1
��

π2 // Y

fγ
��

X
fβ // Z

Note that π1 and π2 need not be morphisms of coalgebras.

Behavioural equivalence between a B-coalgebra (X,β) and itself, is simply referred to
as behavioural equivalence of (X,β).
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If a final coalgebra does not exist, then (Z,z) in Definition 2.7 can be replaced by a
simple coalgebra. 1 All results in this section with behavioural equivalence defined for
a final coalgebra will then still be valid [25].

In Set, behavioural equivalence of two coalgebras (X,β) and (Y ,γ) is given by the ker-
nel relation of fβ and fγ :

R := {(x,y) ∈ X ×Y | fβ(x) = fγ (y)}. (3)

For any two functions X S
ρ1oo

ρ2 // Y such that fβ◦ρ1 = fγ◦ρ2, defining n : S // R

by n : s 7→ (ρ1(x),ρ2(y)) shows that R is indeed the pullback.

It is often useful to know what behavioural equivalence means in the context of the
particular system that the coalgebra models:

Example 2.8. Let (X,L,δ) and (Y ,L,ε) be stream systems. Note that δ and ε are
L-coalgebras with L = L×(−). Recall from Example 2.6 that (Lω, z) with z = (hd, tl)
is the final coalgebra.
Two states x ∈ X and y ∈ Y are behaviourally equivalent iff they produce the same
stream. Indeed, if (x,y) ∈ R with R as in (3), then (fδ ◦ π1)(x,y) = (fε ◦ π2)(x,y),
which means that fδ(x) = fε(y).

Other examples of coalgebras, and a central topic of this thesis, are labeled transition
systems.

Definition 2.9. A labeled transition system (LTS) is a triple (X,L,→), where X is the set
of states, L is a set of labels, and→ ⊆ X × (L×X) is the transition relation.

Like before, we write x→ (l,y) or x
l−→ y whenever (x, l,y) ∈ →.

With stream systems, every state has exactly one outgoing transition defined by the
transition function δ. Here, the transition relation→ allows for more than one possible
transition, indeed, a set of labeled transitions. One state therefore defines not just one
stream, but a (possibly infinite) set of traces.

Labeled transition systems are B-coalgebras for the functor B = P (L × (−)). An LTS
(X,L,→) corresponds to a B-coalgebra β : X // P (L×X) if we let

x
l−→ y ⇐⇒ (l,y) ∈ β(x)

This correspondence is then one-on-one by construction of the powerset P = 2(−) us-
ing the subobject classifier, which is the two element set 2 in Set. Indeed, the relation
→ is a subset (subobject in Set), and hence corresponds to a morphism χ→ : X × (L×
X) // 2. Through the natural bijection homSet(X × (L×X),2) � homSet(X,2L×X), this
in turn corresponds to a morphism X // P (L × X), which is our coalgebra struc-
ture β.

1A B-coalgebra (X,β) is called simple if for every B-coalgebra morphism h : (X,β) // (Y ,γ) the
following holds: if h is an epimorphism in C, then h is an isomorphism.
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Hence, the notion of a labeled transition system and a B-coalgebra for this functor can
be used interchangeably.

Example 2.10. We can graphically present an example of an LTS as follows:

u aii t′1
b // u′ all

s a // t
b 44

c **
s′

a **

a 44

v aii t′2 c
// v′ all

This transition system has a set of states X = {s, t,u,v, s′, t′1, t
′
2,u
′,v′} and a set of

labels L = {a,b,c}.
The coalgebra structure β : X // P (L×X) that corresponds to this LTS has, for
example, β(t) = {(b,u), (c,v)} and β(s′) = {(a, t′1), (a, t′2)}.
Note that s and s′ are trace equivalent, as they both admit the same traces
(abaa . . .) and (acaa . . .). Are they behaviourally equivalent?

To discover what behavioural equivalence means for labeled transition systems, we
introduce the notion of a bisimulation relation.

Definition 2.11. Let B : C // C be a functor. A binary relation X R
π1oo π2 // Y

in C is a B-bisimulation between (X,β) and (Y ,γ) if there is a B-coalgebra structure
n : R // BR such that the following diagram in C commutes:

X

β
��

R
π2 //π1oo

n
��

Y

γ
��

BX BR
Bπ1

oo
Bπ2

// BY

Equivalently, we have a span (X,β) (R,n)
π1oo π2 // (Y ,γ) in B-Coalg. The greatest

B-bisimulation, if it exists, is referred to as B-bisimilarity and denoted ∼.

In the case that C is Set and assuming B preserves weak pullbacks, the class of all
B-bisimulations between two given B-coalgebras forms a complete lattice, meaning
B-bisimilarity exists. [19]

Like with behavioural equivalence (see Example 2.8), it is useful to know what bisimi-
larity means in the context of the concrete system that a coalgebra represents. (We use
X = Y here.)

Definition 2.12. Let (X,L,→) be a labeled transition system. A relation R ⊆ X ×X is a
bisimulation for (X,L,→), if xRy implies that, for all l ∈ L:

(i) for all x′ ∈ X, if x
l−→ x′, then there is y′ ∈ X such that y

l−→ y′ and x′Ry′;

(ii) for all y′ ∈ X, if y
l−→ y′, then there is x′ ∈ X such that x

l−→ x′ and x′Ry′.

Two states x,y ∈ X are bisimilar if there is a bisimulation R such that xRy.
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The first item says that if xRy, any outgoing labeled transition from x can be mimicked
by y, using the same label. The respective targets of the transitions (here x′ and y′)
should again be in the relation. Bisimilarity (the greatest bisimulation) is symmetric
by merit of the second item.

It is customary to prove that bisimilarity of labeled transition systems corresponds to
the B-bisimilarity.

Lemma 2.13. Bisimilarity for labeled transition systems as in Definition 2.12 corre-
sponds to B-bisimilarity for their corresponding coalgebra structure.

Proof. Omitted, but quite straightforward by spelling out the definition of coalgebraic
bisimulation in terms of the labeled transition system. See [9] for an example.

Example 2.14. The states s and s′ in Example 2.10 are not bisimilar. Indeed, if
they were, then there is a bisimulation R such that sRs′, and since s

a−→ t, we must
have either tRt′1 or tRt′2 (or both).

But tRt′1 cannot be, since t
c−→ v, and there is no outgoing transition from t′1 la-

beled with c. Similarly, tRt′2 cannot be, since t′2 cannot mimic t
b−→ u.

We conclude that (s, s′) cannot be in a bisimulation relation, and hence, s and s′

are not bisimilar.

To conclude this section about coalgebras, we give a condition under which behavioural
equivalence of a B-coalgebra corresponds to B-bisimilarity. [3]

Lemma 2.15. Assume C has all pullbacks and let B be an endofunctor on C that
preserves weak pullbacks. Let (X,β) and (Y ,γ) be B-coalgebras and assume a final
coalgebra (Z,z) exists. Behavioural equivalence between X and Y corresponds to B-
bisimilarity.

Proof. Let X R
π1oo π2 // Y be behavioural equivalence. We want to show that any

bisimulation relation S is contained inR and furthermore, thatR itself is a bisimulation
relation.

Let (X,β) (S,n)
ρ1oo

ρ2 // (Y ,γ) be a bisimulation relation. Note that ρ1 and ρ2 are

jointly monic (the pairing (ρ1,ρ2) is a monomorphism), and so are π1 and π2.

Consider the unique coinductive extensions fβ , fγ , and fn from β, γ , and n, respectively,
to the final coalgebra z. Since all three are unique, we must have that fβ ◦ ρ1 = fn and
fγ ◦ ρ2 = fn, and so we have fβ ◦ ρ1 = fγ ◦ ρ2.

15



Since R is a pullback, we get a morphism q from S to R:

S q
((

ρ1
$$

ρ2

&&
R

π2 //

π1
��

Y

fγ
��

X
fβ // Z

This shows that S � R as subobjects of X×Y (the associated monomorphisms being the
pairings (ρ1,ρ2) and (π1,π2)). Hence, S is contained in R.

Conversely, to show that the behavioural equivalence R is a bisimulation relation, we
use that fβ and fγ are morphisms of B-coalgebras to obtain

Rπ1
uu

π2
))

X !fβ
))

β��

Y
γ
��

!fγ
uu

Z
z��BX Bfβ

))
BYBfγ

uu
BZ

as a commuting diagram. Now apply B to the upper (pullback) square:

BR
Bπ2 //

Bπ1

��

BY

Bfγ
��

BX
Bfβ // BZ

which is a weak pullback square, since B preserves weak pullbacks.

Now use the universal property with BX R
β◦π1oo

γ◦π2 // BY of this weak pullback (note
that Bfβ ◦ β ◦π1 = Bfγ ◦ γ ◦π2) to get a (not necessarily unique) morphism n as in the
commuting cube

R
n
&&

π2 //

π1

��

Y γ
&&

fγ
��

BR
Bπ2 //

Bπ1

��

BY

Bfγ
��

X

β &&

fβ // Z
z
&&

BX
Bfβ // BZ

After some clever diagrammatic origami and omitting z, we can see that n is a witness
for R being a bisimulation, so behavioural equivalence is a B-bisimulation itself.

Hence, behavioural equivalence corresponds to B-bisimilarity.
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2.2 Algebras for Generating Syntax

We have seen some small examples of labeled stream and transition systems. We
also described how they can be viewed as B-coalgebras for a specific endofunctor
B : C // C, where B = L× (−) for stream systems, and B = P (L× (−)) for transition
systems.

The examples we have seen are small, and do not reveal a meaningful interpretation.
The states of the systems were just given some seemingly random name. This is not
the case in an LTS of a process calculus. There, states are interpreted as processes ex-
changing data and running concurrently. We need a way for these processes to have
some sort of shape, which we refer to as the syntax of the process calculus. It turns out
that syntax can also be described by an endofunctor, which we call S. In this section
we will explain how the syntax can be described by an endofunctor.

A process calculus often provides a mechanism of writing down states by use of a
syntax grammar. A syntax grammar consists of rewrite rules, and arises from the notion
of an algebraic signature:

Definition 2.16. An algebraic signature Σ is a set of function symbols or operators. To
each operator f ∈ Σ is associated a term-arity ]f ∈ N.

Symbols with term-arity zero are referred to as constants or constant symbols. Operators
with arities one, two, or three are referred to as unary, binary, and ternary operators,
respectively. For binary operators, we often use infix notations.

If X is some set of term variables, then ΣX is defined as the set of Σ-terms, where only
one operator has been applied on elements of X (e.g. x + y, with x,y ∈ X and + ∈ Σ).
The set Σ∗X denotes the smallest set that contains X and is closed under application
of operators of Σ. The star ∗ denotes that we can recursively apply Σ-operations any
number of times. Thus, Σ∗X contains all terms recursively built from Σ-operations
over elements from X.

Algebraic signatures correspond to syntax grammars by letting each operator of the
signature correspond to a rewrite rule in the grammar. The recursive applications of
operators on constants or term variables can be represented by a syntax tree. If every
branch of that tree ends in a constant then we call it a closed Σ-term. Hence, Σ∗∅ is the
set of closed Σ-terms, since it is free of variables.

Example 2.17. Simple arithmetic expressions involving addition, multiplication,
and an additive inverse for natural numbers can be generated by an algebraic
signature Σ = {+, · ,−}∪N, with ]+ = ] · = 2, ]− = 1 and ]n = 0 for all n ∈ N.
A syntax grammar can be as follows:

e ::= e+ e | e · e | −e | n | x

with n ∈ N and x ∈ X is a term variable. This grammar qualifies any natural
number as a closed expression (a constant symbol), but also, e.g., the closed ex-
pression 5 + 7 · −0.
The expression 42 + x is not closed.
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It is often good to specify which operators bind stronger. With arithmetic ex-
pressions, for example, it is customary to let negation bind strongest, and multi-
plication stronger than addition. This means that −5+−7·0 should be interpreted
as (−5) + ((−7) · 0). The syntax tree of this expression is

+
- ·
5 - 0

7

Example 2.18. A simplified version of the Calculus of Communicating Systems
(CCS) models processes using the following grammar:

P ::= P + P | P ‖ P | α . P | nil

where α ranges over a set L. We let L = A∪A∪{τ}, with A some countable infinite
set of names, A = {a | a ∈ A} that associates to each name a unique dual name, and
τ < A∪A. Furthermore, we let a = a.
We have Σ = {+,‖,nil}∪{α . _ | α ∈ L}, i.e., one unary operator α . _ for every α ∈ L.
Note that the grammar contains no rule for a variable, so we only consider closed
terms here.
The grammar qualifies e.g. a . b . nil as a process (if a,b ∈ A). The dot operator
binds strongest, and ‖ binds stronger than +, so the process a . nil ‖ a . nil+ b . nil
should be understood as ((a . nil) ‖ (a . nil)) + (b . nil).
The interpretation, although not formally specified, should be as follows:

• a process P +Q can behave either as P or as Q;
• a process P ‖Q runs P and Q in parallel;
• a process α . P performs an action α and then continues as P ;
• a process nil has terminated and cannot perform any actions.

We can study syntax grammars more effectively by viewing them as a categorical con-
struct. Let S : C // C be an endofunctor.

Definition 2.19. An S-algebra in a category C is a pair (X,σ ), where X is an object of
C, called the carrier, and σ : SX // X is a morphism.

We will sometimes write σ in lieu of (X,σ ).

To see the correspondence between the syntax generated by an algebraic signature Σ
and S-algebras, define the syntax functor

SX =
∐
f∈Σ

X × . . .×X︸      ︷︷      ︸
]f

(4)

An S-algebra structure then is a morphism σ :
∐

f∈ΣX
]f // X, where each compo-

nent X]f // X represents the operation of a single symbol f. We will use Σ and S
interchangeably.
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For a given endofunctor S, the collection of S-algebras forms a category, denoted
S-Alg. A morphism between S-algebras σ and τ is a morphism f : X // Y of its
underlying carriers X,Y that respects the algebra structure. That is, it makes the fol-
lowing diagram commute:

SX
Sf //

σ
��

SY

τ
��

X
f // Y

There is an obvious forgetful functor US for every S from S-Alg to C.

Initial S-algebras and final S-algebras are respectively initial and final objects of the
category S-Alg. If C has a final object Z, then the final S-algebra is trivially this object,
along with the unique morphism from SZ to it.

If there is an initial algebra, then for any algebra σ , there is a unique morphism gσ
of S-algebras from the initial algebra to σ . The S-algebra morphism gσ is called the
inductive extension of σ .

Dual to Lemma 2.5, we have the following lemma to be used later:

Lemma 2.20. Let S : C // C be an endofunctor on C. A final object Z of C yields a
unique algebra structure y : SZ // Z which is a final S-algebra.

Proof. Dual to the proof of Lemma 2.5.

Example 2.21. Let S be the endofunctor such that SY = 1+Y with 1 = {∗}. The set
of natural numbers N carries an initial algebra structure α : 1 +N // N with

α :

ι1(∗) 7→ 0
ιN(n) 7→ n+ 1

Here, ι1 and ιN respectively denote the injections of 1 and N into 1 +N.
To show that α is an initial S-algebra, let (X,σ ) be an S-algebra. We need a
function g : N // X, such that

1 +N
id1+g //

α
��

1 +X

σ
��

N g
// X

commutes. Put g : 0 7→ σ (ι1(∗)), since only then (g ◦ α)(ι1(∗)) = (σ ◦ id1)(ι1(∗)).
Furthermore, for n > 0, put g : n 7→ σ ((g(n− 1))), since only then

(g ◦α)(ιN(n)) = g(n+ 1) = σ (g(n)) = (σ ◦ g)(ιN(n))

This recursively, totally, and uniquely defines an inductive extension gσ = g, and
thus, (N,α) is an initial S-algebra.
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The following lemma provides a way to swiftly find a carrier for an initial algebra:

Lemma 2.22. If S : Set // Set is the endofunctor corresponding to Σ as described
in (4), then the set Σ∗∅ of closed Σ-terms carries an initial S-algebra structure.

Proof. See Appendix B.1.

Example 2.23. An algebra structure for the syntax functor corresponding to the
algebraic signature Σ = {+,‖,nil} ∪ {α . _ | α ∈ L} with the syntax grammar

P ::= P + P | P ‖ P | α . P | nil

in Example 2.18 is of the form

σ : X2 +X2 +X + . . .+X︸      ︷︷      ︸
α∈L

+1 // X

The first component X2 // X is the representation of the symbol +, the sec-
ond for ‖, and the component 1 // X is for the symbol nil. All components
X // X represent some operator α . _ for α ∈ L.
Since L is countable, X + . . .+X, as a set, is isomorphic to L×X. We obtain

σ : X2 +X2 +L×X + 1 // X,

which may be more intuitive.

As described in Section 1.2, bisimilarity ideally is a congruence. This means that, as a
relation, it should respect the S-algebra structure. Formally:

Definition 2.24. Let (X,σX) and (Y ,σY ) be S-algebras. A relation X R
π1oo π2 // Y in

C is called an S-congruence if there is a morphism m such that the following diagram
commutes:

SX

σX
��

SR
Sπ2 //Sπ1oo

m
��

SY

σY
��

X Rπ1
oo

π2
// Y

If a congruence R is moreover reflexive, and f ∈ Σ is such that ]f > 0, then for every
e1, . . . , en−1 ∈ Σ∗∅, the implication

∀x,x′ ∈ X . xRx′ =⇒ f(e1, . . . ,x, . . . , e]f−1) R f(e1, . . . ,x
′, . . . , e]f−1)

holds. Here, the arguments x and x′ can be used as the i-th operand for any i ∈
{1, . . . , ]f}, as long as they are on the same place on both sides of the relation.
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Example 2.25. Let Σ be as in Example 2.18 and consider the initial algebra struc-
ture

σ : ΣΣ∗∅ // Σ∗∅

If R ⊆ Σ∗∅ ×Σ∗∅ is a congruence, then

ΣΣ∗∅

σ
��

ΣR
Sπ2 //Sπ1oo

m
��

ΣΣ∗∅

σ
��

Σ∗∅ Rπ1
oo

π2
// Σ∗∅

commutes. Let (x1,x2), (y1, y2) ∈ R. Then (x1,x2) + (y1, y2) is a term in ΣR. Let
(z1, z2) ∈ R be the image of this term underm. The commuting diagram then says
that z1 = x1 + y1 and z2 = x2 + y2 and therefore that (x1 + y1)R(x2 + y2).
We also have xRx′ =⇒ (α . x)R(α . x′) for any α ∈ L and xRx′ =⇒ (x ‖ y)R(x′ ‖ y)
for all y.

2.3 Stream and Transition System Specifications

We have seen that stream systems and transition systems are coalgebras, and, syn-
tactically, their states can be generated using algebras. The algebras and coalgebras
describe a more abstract structure than specific syntax grammars and transition rules
of a system.

The interplay between syntax and transition rules becomes visible in transition system
specifications, which will later be seen to be the combination of algebras and coalgebras
into bialgebras:

Definition 2.26 (Transition system specification in GSOS format). Let Σ be an algebraic
signature and L a set of labels. A transition system specification over (Σ,L) is a set R of
inference rules, which are expressions of the form

{xij
lj
−→ yj}j∈[1,m]

f(x1, . . . ,xn)
l−→ t

in which we have

• a set of meta-variables V = {x1, . . . ,xn,y1, . . . ,ym}, (ij ∈ [1,n] for every j ∈ [1,m])

• a symbol f ∈ Σ operating on meta-variables {x1, . . .xn}, transitioning to

• a Σ-term t ∈ Σ∗V built over the set of meta-variables V , and

• labels l1, . . . , lm, l ∈ L.

We could have had a much more general format for inference rules. Consider, for
example, the source of the conclusion f(x1, . . . ,xn). A more general format would allow
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this term to be of any shape, just as t ∈ Σ∗V is of a general shape. Instead, only one
operator of Σ can be used once, and the set of meta-variables on which it operates it
limited to {x1, . . . ,xn}. Another restriction is that the source of every conclusion (the
xij ) must also occur in the source of the conclusion. These restrictions on the shape of
the rule are known as the GSOS rule format [4]. Later, it will become technically clear
why the restrictions are useful.

Note that the set of meta-variables, ranged over by x,y, . . ., are not the same as variables
x,y, . . . for the states. (Notice here the difference in typesetting.) Instead, they are to be
thought of as placeholders for variables or states.

In order to replace the meta-variables by states over a set of state variables X, we
require a substitution, which is a mapping φ : V // Σ∗X. This substitution can easily
be extended to work on Σ-terms over V , by applying it component-wise. We then
obtain φ : Σ∗V // Σ∗X, so that φ can also be applied to t, and so, on all literals of an
inference rule. A closed substitution is one that maps meta-variables to closed Σ-terms,
i.e., φ : V // Σ∗∅.

Finally, we can use inference rules in combination with substitutions to construct a
transition system, and deduce valid transitions in our system:

Definition 2.27. Let Σ be an algebraic signature, L a set of labels, and R a TSS over

(Σ,L). Furthermore, let X be a set of state variables. A proof tree of a transition s
k−→ s′

for R is a finite upwardly branching rooted tree such that

(i) the root s
k−→ s′ is a transition of terms in Σ∗X and

(ii) if {qij
lij
−−→ rj}j∈[1,m] is the set of transitions above a node of the tree with transition

p
l−→ p′, then there is a rule

{xij
lj
−→ yj}j∈[1,m]

f(x1, . . . ,xn)
l−→ t

and a substitution φ : V // Σ∗X such that φ(xij
lj
−→ yj) = qij

lj
−→ rj for all j ∈

[1,m] and φ(f(x1, . . . ,xn)
l−→ t) = p

l−→ p′.

A transition is provable in R if it is the node of a proof tree.

Definition 2.28. Let Σ be an algebraic signature, L a set of labels, and R a TSS over
(Σ,L). A model for R is an LTS (Σ∗X,L,→), where X is a set of state variables and the
transition relation→ contains all instances of provable transitions.

The intended model of a specification is the smallest model: the model (Σ∗∅,L,→) of
ground terms, that only uses ground substitutions for instantiating the proof trees.

Example 2.29. Using L = {a,b} and Σ = {alt,a,b}, with ]a = ]b = 0 and ]alt = 2,
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we can define

x
l1−→ x′ y

l2−→ y′

alt(x,y)
l1−→ alt(y′,x′)

a
a−→ a b

b−→ b

to obtain a very simple stream system where a = (aa . . .), b = (bb . . .), and, for
example, alt(a,b) = (abab . . .) and alt(a,alt(a,b)) = (aaabaaab . . .).
The labels l1 and l2 range over L, whereas a and b are fixed.
Note that the rules in this specification adhere to an even stricter format. They
are simple stream SOS rules: the conclusion target t also has only one operator.
Moreover, it is built only from meta-variables that are targets of the premises.

Example 2.30. Let Σ be the algebraic signature and L = A ∪A ∪ {τ} be the set
of labels of CCS defined in 2.18. We can formally give an interpretation to the
terms by specifying the following rules:

Act
α . x

α−→ x

x
α−→ x′ y

α−→ y′
Com

x ‖ y τ−→ x′ ‖ y′

x
α−→ x′ SumL

x+y
α−→ x′

y
α−→ y′

SumR
x+y

α−→ y′

x
α−→ x′ ParL

x ‖ y α−→ x′ ‖ y
y

α−→ y′
ParR

x ‖ y α−→ x ‖ y′

Figure 1: Set of Generalized Structural Operational Semantics (GSOS) rulesRCCS
for a reduced version of CCS

The specification contains one axiom scheme Act (α ranges over L), by which we
get, for example a transition a . nil

a−→ nil.
We can also prove that the transition a . b . nil ‖ a . nil + c . nil

τ−→ b . nil ‖ nil
occurs in the intended model: for the root, consider Rule SumL and the closed
substitution that sends x to a . b . nil ‖ a . nil, y to c . nil, and x′ to b . nil ‖ nil to
obtain:

a . b . nil ‖ a . nil τ−→ b . nil ‖ nil
SumL

a . b . nil ‖ a . nil+ c . nil τ−→ b . nil ‖ nil

So the transition is valid if we can prove a . b . nil ‖ a . nil τ−→ b . nil ‖ nil.
This is done in the following tree, where some substitutions are silently applied:

Act
a . b . nil

a−→ b . nil
Act

a . nil
a−→ nil Com

a . b . nil ‖ a . nil τ−→ b . nil ‖ nil

23



2.4 Distributing Syntax over Behaviour

We have seen how the behaviour of a transition system is specified by a set of rules,
inducing a transition relation that is equivalent to a coalgebra structure. We have also
seen how we can use algebraic structures to describe the syntax of states in a transition
system.

In this part, we look at distribution of syntax over behaviour through defining a natural
transformation λ : SB⇒ BS.

SB λ

��
CS 33

ss



B

TT
BS

(5)

Definition 2.31. A simple distributive law of an endofunctor S over an endofunctor B
is a natural transformation λ : SB⇒ BS.

Intuitively, SB is a functor that builds a term from different behaviours, and λ derives
from this a behaviour for the term, as we can see in the following example:

Example 2.32. Consider Example 2.29, where Σ = {alt,a,b} and L = {a,b}.
For a given X, let λX : SBX // BSX (where S corresponds to Σ) of be given by
the three components

λaltX : (L×X)2 // L×X2, (l1,x′, l2, y′) 7→ (l1, y′,x′).
λaX : 1 // L× 1, a 7→ (a,a)
λbX : 1 // L× 1, b 7→ (b,b)

Taking λ = λaX +λbX +λaltX , we get a natural transformation λ : SB⇒ BS:

λ = λaX +λbX +λaltX : (L×X)2 + 1 + 1 // L×X2 +L× 1 +L× 1 � L× (X2 + 1 + 1)

Notice the similarities with the stream system specification in Example 2.29,
where x (and y) are represented here by streams with head l1 and tail x′ (and
head l2 and tail y′). The image (l1, y′,x′) represents an l1-transition to the term
alt(y′,x′).

This idea of deriving behaviour of a term is also captured in an inference rule in Def-
inition 2.26: from several behaviours of term variables, we infer behaviour for a term
over these variables. Note, however, that our functor S, until now, has been the func-
tor corresponding to Σ, and we cannot yet use several operators of Σ to build a more
complex term, as t ∈ Σ∗V in Definition 2.26 would suggest.

Rather, for an algebraic signature Σ, and with B = L×(−), distributive laws λ : SB⇒ BS
correspond exactly with simple stream SOS specifications, which is a specification in a
format similar to the GSOS rule format, but much more restrictive. (See [10] for more

24



details on this.) Simple stream SOS rules are of the form

{xi
li−→ yi}i∈{1..n}

f(x1, . . . ,xn)
l−→ g(z1, . . . ,z]g)

where all zj ∈ {y1, . . .yn}. There are three big differences with the GSOS rule for-
mat:

1. every term variable xi under f must occur exactly once as the source of a premise;

2. the conclusion target can only be a term of one operator g, rather than a more
complex term t ∈ Σ∗V ; and

3. all term variables under g must be targets of the premise.

Note that the stream system specification in Example 2.29 was in this format, but
the transition system specification in Example 2.30 was not. It makes it impossible
to turn, e.g., the rule ParL into (part of) a natural transformation SB ⇒ BS (where
S corresponds to Σ), since no outgoing transition for the meta-variable y has been
specified.

It is possible, however, to turn specifications in the GSOS rule format into distributive
laws. We will explore this later, in Section 2.6.

2.5 Bialgebras for Congruence of Bisimilarity

Notions of S-algebras for syntax and B-coalgebras for behaviour come together in the
notion of a bialgebra. For bialgebras, we have that B-bisimilarity is an S-congruence, as
we will prove in this section.

Definition 2.33. A bialgebra for a distributive law λ : SB ⇒ BS, or λ-bialgebra for
short, is a triple (X,σ ,β) such that (X,σ ) is an S-algebra and (X,β) is a B-coalgebra, and
the following diagram commutes:

SX
σ //

Sβ
��

X
β
// BX

SBX
λX // BSX

Bσ

OO

The class of λ-bialgebras forms a category, denoted λ-bialg. A bialgebra morphism
from (X,σ ,β) to (Y ,σ ,β) is a morphism in C that is both an algebra morphism and a
coalgebra morphism. Note that dependence of λ-bialg on S and B is left implicit.

Example 2.34. Let λΣ∗∅ be as in Example 2.32 with X = Σ∗∅. We need an algebra
structure and a coalgebra structure for a λ-bialgebra with this carrier.
Recall from Lemma 2.22 that Σ∗∅ carries an initial structure α : ΣΣ∗∅ // Σ∗∅.
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We find βλ,α such that the following diagram commutes:

ΣΣ∗∅ α //

Σβλ,α= id{a}+id{b}+β
2
λ,α

��

Σ∗∅
βλ,α // L×Σ∗∅

Σ(L×Σ∗∅) λΣ∗∅ // L×ΣΣ∗∅

Bα= idL×α
OO

This diagram is defined on three coproduct components: {a}, {b}, and {alt}. For

the component {a} ({b} is analogous) we have a
Σβλ,α7−−−−−→ a

λa
Σ∗∅7−−−−→ (a,a)

Bαa

7−−−→ (a,a), so it
easily follows that we need βλ,α : a 7→ (a,a) (and also βλ,α : b 7→ (b,b)).
For the operation alt, suppose that, for x,y ∈ Σ∗∅, we have βλ,α : x 7→ (l1,x′) and
βλ,α : y 7→ (l2, y′). Then, for alt, we have:

(x,y) � α //
_

Σβλ,α
��

(x,y) (l1, (y′,x′))

(l1,x′, l2, y′)
� λalt

Σ∗∅ // (l1, y′,x′)
_

Bαalt= (idL,αalt)

OO

If we want a commuting diagram, we must therefore have that βλ,α : alt(x,y) 7→
(l1,alt(y′,x′)).
This inductively defines βλ,α on all terms of Σ∗∅.

The coalgebra structure constructed in Example 2.34 seems to be unique. This is in-
deed the case, and it is because α is initial, as stated in the following lemma:

Lemma 2.35. Let λ : SB⇒ BS be a distributive law of S over B.

(i) Let α : SA // A be an initial S-algebra. There is a unique B-coalgebra βλ,α :
A // BA such that (A,α,βλ,α) is a λ-bialgebra. This λ-bialgebra is initial in
λ-bialg.

(ii) Let z : Z // BZ be a final B-coalgebra. There is a unique S-algebra σλ,z :
SZ // Z such that (Z,σλ,z, z) is a λ-bialgebra. This λ-bialgebra is final in
λ-bialg.

The proof requires two functors B+ : S-Alg // S-Alg and S+ : B-Coalg // B-Coalg
as the liftings of B,S : C // C along the forgetful functorsUS orUB respectively:

B+(X,σ ) = (BX,Bσ ◦λX) S+(X,β) = (SX,λX ◦ Sβ)
B+f = Bf S+g = Sg

where f is an S-algebra morphism and g is a B-coalgebra morphism. Note that B+ and
S+ are implicitly depending on λ.
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Is B+ a functor? We should check that for any S-algebra morphism

SX
Sf //

σX
��

SY

σY
��

X
f
// Y

we get that B+f = Bf is a S-algebra morphism from B+(X,σX) = (BX,BσX ◦λX) to
B+(Y ,σY ) = (BY ,BσY ◦λY ). Apply B to the diagram above and use naturality of λ to
combine two commuting squares into one commuting diagram

SBX
SBf //

λX
��

SBY

λY
��

BSX
BSf //

BσX
��

BSY

BσY
��

BX
Bf

// BY

showing that Bf is a morphism of S-algebras from (BX,BσX ◦λX) to (BY ,BσY ◦λY ).

Observe also that B+ preserves identity and composition, since B does.

In a dual way we can show that S+ is a functor.

Proof (of Lemma 2.35). We prove item (i). Item (ii) is completely dual.

Let (A,α) be the initial S-algebra as in (i). Note that if (A,α,β) is any λ-bialgebra, then,
by Definition 2.33, β is an algebra morphism from (A,α) to B+(A,α) = (BA,Bα ◦λA):

SA
α //

Sβ
��

A
β
// BA

SBA
λA // BSA

Bα

OO

By initiality of α, then, taking βλ,α as the unique algebra morphism from (A,α) to
B+(A,α) shows existence and uniqueness of the λ-bialgebra (A,σ ,βλ,α).

We now show that the bialgebra (A,α,βλ,α) is initial in λ-bialg. Consider an arbitrary
λ-bialgebra (X,σ ′,β′). By definition, we have that β′ : (X,σ ′) // B+(X,σ ′) is an alge-
bra morphism, and therefore a B+-coalgebra structure in S-Alg. Since the B+-coalgebra
βλ,α : (A,α) // B+(A,α) is initial by Lemma 2.5, this provides a unique B+-coalgebra
morphism h from βλ,α to β′ (note that h is a morphism in S-Alg):

(A,α) h //

βλ,α
��

(X,σ ′)

β′

��

B+(A,α) B+h // B+(X,σ ′)
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Using that B+h = Bh and unfolding the diagram of S-algebras to a commuting diagram
in C, we see that h is an S-algebra morphism that is also a B-coalgebra morphism:

SA
α //

Sh

((

Sβλ,α
��

A
h //

βλ,α
��

X

β′

��

SX
σ ′oo

Sβ′

��

SBA
Bα◦λA //

SBh

55BA
Bh // BX SBX

Bσ ′◦λXoo

So h is a λ-bialgebra morphism and since any bialgebra morphism is also an algebra
morphism and (A,α) is initial, h is also unique.

We conclude that (A,σ ,βλ,α) is initial.

Example 2.36. Let λLω be as in Example 2.32 with X = Lω. In Example 2.34, we
built an initial λ-bialgebra. Now we will build a final one.
Recall from Example 2.6 that for the functor L = L×(−) a final L-coalgebra struc-
ture is given by z : Lω // L×Lω, defined by z : l0l1l2 . . . 7→ (l0, (l1l2 . . .)), splitting
the stream in a head l0 and a tail (l1l2 . . .).
By Proposition 2.35, we have a final bialgebra with σλ,z : ΣLω // Lω. Observe
that Σ consists of three coproduct components, so σλ,z should consist of three
components σa

λ,z, σ
b
λ,z, and σalt

λ,z, such that the diagrams

{a}
σa
λ,z //

Sz
��

Lω z // L×Lω

{a}
λaLω // L× {a}

Bσa
λ,z= (idL,σ

a
λ,z)

OO
(Lω)2

σalt
λ,z //

Sz
��

Lω z // L×Lω

(L×Lω)2
λaltLω // L× (Lω)2

Bσalt
λ,z= (idL,σ

alt
λ,z)

OO

commute (the diagram for σb
λ,z is completely analogous to that of σa

λ,z).
In the left diagram we see that σa

λ,z picks the constant stream (aa . . .) (and simi-
larly σb

λ,z picks (bb . . .)).
In the diagram on the right, considering ((k0k1k2 . . .), (l0l1l2 . . .)) ∈ (Lω)2, compute

((k0k1k2 . . .), (l0l1l2 . . .))
Sz7−−→ (l0, (l1l2 . . .), k0, (k1k2 . . .))
λaltLω7−−−→ (l0, (k1k2 . . .), (l1l2 . . .))
Bσalt

λ,z7−−−−→ (l0,σ
alt
λ,z((k1k2 . . .), (l1l2 . . .)))

Now observe that σalt
λ,z maps the pair ((k0k1k2 . . .), (l0l1l2 . . .)) ∈ (Lω)2 to a stream in

Lω with head l0 and tail equal to σalt
λ,z((k1k2 . . .), (l1l2 . . .)). Unfolding more ‘heads’

like this, we see that σalt
λ,z picks the alternating stream (l0k1l2k3 . . .).
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Assuming an initial S-algebra (A,α) and a final B-coalgebra (Z,z) exist, let (A,α,βλ,α)
and (Z,σλ,z, z) be the initial and final λ-bialgebras for a distributive law λ : SB⇒ BS.
The coinductive extension fβα of βα to z and the inductive extension gσz from α to σz
are exactly the same:

SA
α //

Sk
��

A
βα //

!k
��

BA

Bk
��

SZ
σz // Z

z // BZ

This is because there is only one morphism from one to the other. As a consequence,
behavioural equivalence on the coalgebra of an initial λ-bialgebra is an S-congruence
[10]. This property does not hold for λ-bialgebras in general, unless B preserves weak
pullback. See Corollary 2.39 below.

Example 2.37. In Example 2.34 we built an initial λ-bialgebra by constructing a
B-coalgebra (Σ∗∅,βλ,σ ). Specifically, we made the behaviour for closed Σ-terms
explicit.
In Example 2.36, on the other hand, we built a final λ-bialgebra by constructing
a Σ-algebra (Lω,σλ,z), where we made explicit the interpretation of streams in
Lω under the algebra of operations.
The unique morphism from Σ∗∅ to Lω has, e.g., k : alt(a,b) 7→ (abab . . .).
Note that this interpretation of closed Σ-terms arises solely from the distributive
law λ specified in Example 2.32 and gives us exactly the intended model of a
stream system (a coalgebra) we wanted in Example 2.29.
One might therefore conjecture that specifications and distributive laws are in
some sort of correspondence.

The following proposition is a major advantage of studying labeled transition systems
in the context of λ-bialgebras:

Proposition 2.38 (Congruence of Bisimilarity). Let λ : SB⇒ BS be a distributive law. If
(X,σ ,β) and (Y ,τ,γ) are λ-bialgebras, then B-bisimilarity between (X,β) and (Y ,γ) is
an S-congruence.

The following corollary is then easily established with Lemma 2.15:

Corollary 2.39 (Congruence of Behavioural Equivalence). Let λ : SB⇒ BS be a distribu-
tive law. If (X,σ ,β) and (Y ,τ,γ) are λ-bialgebras and B preserves weak pullbacks, then
behavioural equivalence between (X,β) and (Y ,γ) is an S-congruence.

Proof (of Proposition 2.38). Let R be B-bisimilarity, which is a B-bisimulation itself, and

let n be its mediating B-coalgebra structure, i.e., (X,β) (R,n)
π1oo π2 // (Y ,γ) is a

span in B-Coalg

Note that π1 and π2 are B-coalgebra morphisms, and so, since S+ is a functor, we get

another span of B-coalgebras S+(X,β) S+(R,n)
S+π1oo S+π2 // S+(Y ,γ) .
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Observe that σ : SX // X is a morphism in C that is also a morphism of B-coalgebras
from S+(X,β) = (SX,λX ◦ Sβ) to (X,β), since

SX
σ //

λX◦Sβ
��

X

β
��

BSX
Bσ // BX

commutes by merit of (X,σ ,β) being a λ-bialgebra. Similarly, τ : S+(Y ,γ) // (Y ,γ)
is a morphism since (Y ,τ,γ) is a bialgebra. Thus, we obtain

(SX,λX ◦ Sβ)

σ
��

(SR,λR ◦ Sn)
Sπ2 //Sπ1oo (SY ,λY ◦ Sγ)

τ
��

(X,β) (R,n)π1
oo

π2
// (Y ,γ)

as a commuting diagram in B-Coalg, and this stands witness to X SR
σ◦Sπ1oo τ◦Sπ2 // Y

being a B-bisimulation for (X,β) and (Y ,γ).

Note that both pairings 〈π1,π2〉 and 〈σ ◦ Sπ1, τ ◦ Sπ2〉 are jointly monic. Furthermore,
since R is the largest bisimulation, SR must be contained in R (as subobjects of X × Y
in C). Hence, we have a morphism m : SR // R in C such that 〈π1,π2〉 ◦m = 〈σ ◦
Sπ1, τ ◦ Sπ2〉, i.e., we have a commuting diagram

SX

σ
��

SR
Sπ2 //Sπ1oo

m
��

SY

τ
��

X Rπ1
oo

π2
// Y

This shows that R is an S-congruence.

2.6 Abstract Rules

In Section 2.4, we explained how simple stream SOS specifications correspond to dis-
tributive laws. Since this kind of specification does not allow us to be very expressive,
we explain here how GSOS specifications (as in Definition 2.26) also correspond to
distributive laws. This is very fruitful, as it will guarantee that these specifications
induce a well-defined transition system that moreover satisfies congruence of bisimi-
larity.

Recall the definitions of pointed, copointed, and monadic functors. (See also Ap-
pendix A.4.) A copointed coalgebra for a copointed functor (B,ε) with ε : B ⇒ Id is a
B-coalgebra (X,β) such that εX ◦ β = idX . If C has finite products, then any functor
B gives rise to a copointed functor Id × B with ε being the first projection. This is
called the cofree copointed functor for B. For any endofunctor B, there is a bijective
correspondence between B-coalgebras and copointed (Id×B)-coalgebras.
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Dually, we have that a pointed algebra (X,σ ) for a pointed functor (S,η) with η : Id⇒ S
is an S-algebra with σ ◦ ηX = idX . The unit of the free pointed algebras here is the nat-
ural family of coproduct injections η : Id⇒ Id + S. Also, if C has finite coproducts, for
any endofunctor S, there is a bijective correspondence between S-algebras and pointed
(Id + S)-algebras.

Finally, an Eilenberg-Moore F-algebra (X,σ ) for a monad (F,µ,η) is an F-algebra such
that the diagrams

SX

σ
��

X

ηX
==

idX // X

SSX

Sσ
��

µX // SX

σ
��

SX
σ // X

commute. Note that the diagram on the left just says that (X,σ ) is a pointed (F,η)-
algebra.

If a syntax functor S corresponds to an algebraic signature Σ, then the functor S∗

forms a monad, called the free monad, with unit η and multiplication µ. Here, ηX :
X // S∗X gives an interpretation of variables inX as terms, and µX : S∗S∗X // S∗X
glues terms built from terms.

There is an isomorphism between S-Alg and the category S∗-Alg of Eilenberg-Moore
algebras for the free monad (S∗,µ,η). The initial algebra for the free monad is S∗∅.

Definition 2.40. A distributive law of a monad (F,µ,η) over a copointed endofunc-
tor (G,ε) is a natural transformation λ : FG ⇒ GF such that the following diagrams
commute:

FG
λ +3

Fε �%

GF

εF
��

F

G

ηG
��

Gη

�%

FG
λ +3 GF

FFG
Fλ +3

µG
��

FGF
λF +3 GFF

Gµ
��

FG
λ +3 GF

The first diagram ensures that the coalgebraic structure of λ-bialgebras is copointed,
and the other two ensure that the algebras are Eilenberg-Moore algebras.

The result of Proposition 2.38 holds also for distributive laws of monads over co-
pointed functors. However, it is a difficult task to check all the commuting diagrams.
Fortunately, we have abstract rules, which correspond to distributive laws and are eas-
ier to construct.

Let (S∗,µ,η) be the free monad over an endofunctor S corresponding to an algebraic
signature Σ, and (B,ε) be a copointed endofunctor over B.

Definition 2.41. An abstract rule of S over B is a natural transformation

ρ : S(Id×B)⇒ BS∗.
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The axiomatic diagrams of Eilenberg-Moore algebras and distributive laws of monads
over copointed endofunctors then provide the following result:

Lemma 2.42. Abstract rules of S over B are in a 1-1 correspondence with distributive
laws of (S∗,µ,η) over (B,ε).

Proof. Omitted, but see [11], for example.

As we will show in the example below, GSOS specifications correspond to abstract
rules:

Lemma 2.43. Every GSOS specification as in Definition 2.26 gives rise to an abstract
rule, and every abstract rule arises from such a GSOS specification.

Proof. Also omitted, but see [10], for example.

We can build bialgebras for the distributive law that corresponds to the abstract rule.
Those bialgebras then satisfies congruence of bisimilarity. Therefore, the following
significant proposition is a corollary of all results in Section 2:

Proposition 2.44. Bisimilarity for transition systems induced by rule specifications in
GSOS format are a congruence.

Example 2.45. We build an abstract rule for the specification for the simplified
CCS given in Example 2.30. Note that, since all the rules are in GSOS format, we
already know from Lemmas 2.42 and 2.43 that, through a correspondence with a
distributive law, the transition system that the specification induces enjoys con-
gruence of bisimilarity. This example only serves to illustrate in which manner
specifications correspond to abstract rules.
The rules in the specification are:

Act
α . x

α−→ x

x
α−→ x′ y

α−→ y′
Com

x ‖ y τ−→ x′ ‖ y′

x
α−→ x′ SumL

x+y
α−→ x′

y
α−→ y′

SumR
x+y

α−→ y′

x
α−→ x′ ParL

x ‖ y α−→ x′ ‖ y
y

α−→ y′
ParR

x ‖ y α−→ x ‖ y′

Recall also from Example 2.18 and Example 2.23 that for the associated syntax
grammar

P ::= P + P | P ‖ P | α . P | nil,

we have a syntax functor S such that

SY = Y 2 +Y 2 +L×Y + 1.
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The corresponding coproduct injections we denote by σ+, σ‖, σL, and σnil. For
each injection, we will define part of the abstract rule ρ : S(Id×B)⇒ BS∗.
For a given X, define

ρ+
X : (X ×P (L×X))2 // P (L× S∗X), (x,Wx, y,Wy) 7→Wx ∪Wy

Here, Wx and Wy are subsets of L×X (and also of L×S∗X) and represent the sets
of all possible outgoing transitions for x and y respectively. This part there-
fore gives all possible outgoing transitions for a term x + y, and it combines
Rules SumL and SumR.
The part for parallel composition is even more interesting:

ρ‖X : (X ×P (L×X))2 // P (L× S∗X),

(x,Wx, y,Wy) 7→

{(α,σ‖(x′, y)) | (α,x′) ∈Wx}
∪

{(α,σ‖(x,y′)) | (α,y′) ∈Wy}
∪

{(τ,σ‖(x′, y′)) | ∃α ∈ L . (α,x′) ∈Wx ∧ (α,y′) ∈Wy}

Note that all three sets in the domain are an element of P (L×SX), and therefore
of P (L×S∗X). The first two sets correspond to Rules ParL and ParR and the third
corresponds to Rule Com.
Finally, we have the rules for action prefixing and termination:

ρLX : L×X ×P (L×X) // P (L× S∗X), (α,x,Wx) 7→ {(l,x)}

ρnil : 1 // P (L× S∗X), ∗ 7→ ∅

Notice how we ignore the set Wx in the rule for prefixing, reflecting the fact that
Rule Act is an axiom, and we do not care about the existing outgoing transitions
for x. We verify that ρ is indeed natural by checking that

S(X ×BX)
ρX //

S(f ,Bf )
��

BS∗X

BS∗f
��

S(Y ×BY ) ρY
// BS∗Y

commutes for a morphism f : X // Y . We only show this for the component
ρ+, for which we have:

(X ×P (L×X))2 ρX //

(f ,Bf ,f ,Bf )

��

BS∗X

BS∗f

��

(x1,W1,x2,W2) � //
_

��

W1 ∪W2

(f (x1),W ′1, f (x2),W ′2) � // W ′1 ∪W
′
2

(X ×P (L×Y ))2
ρY

// BS∗Y
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whereW ′1 = {(l, f (x′1)) | (l,x′1) ∈W1} andW ′2 = {(l, f (x′2)) | (l,x′2) ∈W2}. The diagram
commutes, since W ′1 and W ′2 are exactly the image of W1 and W2 (respectively)
under BS∗f .
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3 Nominal Sets

Labeled transition systems of process calculi model processes that create and pass
around names (referring to values or variables) with each other. As we explained in
Section 1, these models therefore require notions of freshness, α-equivalence, name
binding, and capture-avoiding substitutions. In this section we mathematically de-
scribe these notions, and this will help us formalize name-passing process calculi with
the category theory described in the previous section.

We consider this section as a self-contained and complete stepping stone to the next
section. A reader interested in more background theory is advised to consult [18].
There, only G-sets are considered. The theory here is, at times, more general, in that
we also describe M-sets. This is needed to define the capture-avoiding substitutions
on processes later.

3.1 M-Set and G-Set: Categories of Sets with Actions

We start out with the theory of actions of monoids and groups on sets in general.
Later, we will apply all this with the monoid of arbitrary renamings, mapping names
to names, and the group of bijective renamings, i.e., the group of permutations of
names.

Let X be a set and M a monoid with neutral element e. An action of M (or M-action)
on X is a function · :M ×X // X, such that, using infix notation:

m · (m′ · x) = (mm′) · x
e · x = x

for all m,m′ ∈M and x ∈ X.

Definition 3.1. If M is a monoid, then an M-set is a set X equipped with an action of
M on X.

For the monoid action of an M-set Y , the same notation is used as the monoid action
of a different M-set X. That is, we write both m · x and m · y for x ∈ X and y ∈ Y , even
though the monoid action can be different.

Example 3.2. For a given monoidM, a trivial example of anM-set is the monoid
M itself. Its action, called the natural action, is the monoid multiplication itself.

The set End(X) of functions from X to X, described in the following example, is an
important monoid:

Example 3.3. Let X be a set. Then the set of functions End(X) = {δ : X // X}
forms a monoid. The monoid operation is function composition and its neutral
element is the identity function 1X . Function application on X turns X into an
End(X)-set. Indeed, 1X · x = 1X(x) = x for all x and

ε · (δ · x) = ε(δ(x)) = (ε ◦ δ)(x) = (ε ◦ δ) · x

35



For any monoidM, any setX can be made into anM-set using the actionM×X // X
given by projection. With this action, X is called a discrete M-set.

For a fixed M, the collection of all M-sets forms a category, denoted M-Set, where the
morphisms are equivariant functions:

Definition 3.4. A function f : X // Y between two M-sets X and Y is called M-
equivariant (or equivariant if M is clear from the context) if it commutes with the
monoid action: f (m · x) =m · (f x) for all m ∈M and x ∈ X.

Since every group is also a monoid, we can also considerM-sets withM being a group.
Any statement we make about M-sets will automatically be true about G-sets. Some
results, however, may only hold for G-sets. When we specifically demand that the
monoid is a group, we will write G instead of M and talk about G-sets (and G-Set)
instead of M-sets (and M-Set).

The submonoid Sym(X) of End(X) containing all bijections forms a group. This group
will be an important stepping stone towards construction of the category of nominal
sets that we later define.

Example 3.5. For any set X, the monoid End(X) has a submonoid Sym(X) = {f :
X // X | f is a bijection}, which forms a group, called the symmetric group on
X. As with End(X), the group operation is function composition and its neutral
element is the identity function. The inverse of an element of Sym(X) is the
inverse function.
The action of function application on elements of X turns X into a Sym(X)-set.

3.2 M-Set and G-Set are Cartesian Closed

Fix a monoid M and a group G. In what follows we outline some structures and prop-
erties of the categories M-Set and G-Set. Recall that all properties for M-Set also hold
for G-Set.

The terminal object inM-Set is the discrete pointed set 1 = {∗}. That is, we havem· ∗ = ∗
for all m ∈M. The initial object is the empty set, along with the empty M-action.

The product in M-Set is constructed just as in Set: a product

X ×Y = {(x,y) | x ∈ X,y ∈ Y }

is an M-set if we let m · (x,y) = (m · x,m · y). We have obvious equivariant projections

X X ×Y
π1oo π2 // Y .

The coproduct in M-Set, much like in Set, corresponds to disjoint union, i.e.,

X +Y = {0} ×X ∪ {1} ×Y .

Indeed, X+Y is anM-set if we letm ·(0,x) = (0,m · x) andm ·(1, y) = (1,m · y). Again, the

injections in X
ι1 // X +Y Y

ι2oo are equivariant functions. (Note that we cannot
define an M-action on a union of sets in general.)
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The category M-Set (and G-Set) has products, and also exponentiation:

Lemma 3.6. For any monoid M, the category M-Set is cartesian closed.

Proof. A constructive proof is given in Appendix B.2. Here, we give a categorical proof.

We can view M as the single object of a category M, where morphisms are the monoid
elements, and monoid multiplication mm′ is defined as m′ ◦m. This way, an M-set can
be seen as a presheaf on M, i.e., a functor F : Mop // Set.

Also, for two M-sets FM and GM, an equivariant function is a natural transformation
λ : F⇒ G. Indeed, naturality of λ means that the single component λM is equivariant.
We see that M-Set = [Mop,Set], the category of functors from Mop to Set.

Since M is small, [Mop,Set] =M-Set is cartesian closed [12].

The proof in Appendix B.2 constructs the exponent Y X as the set of equivariant func-
tions fromM×X // Y , using the natural action onM. (See Example 3.2.) The action
on Y X is constructed such that m · f : (n,x) 7→ (nm,x).

Exponentiation in G-Set is constructed exactly as in M-Set:

Corollary 3.7. For any group G, the category G-Set is cartesian closed.

Besides the natural action, another G-action on G is possible. Namely, a conjugation
action, defined by:

g � g ′ := gg ′g−1

We use different notation to distinguish from the natural action. Obviously this satis-
fies the required identity law, and we verify that it is indeed a group action by noting
that g � (g ′ � h) = g(g ′hg ′−1)g−1 = (gg ′)h(gg ′)−1 = (gg ′)� h.

There is a more convenient characterization of an exponent:

Proposition 3.8. Let X and Y be G-sets. Then there is an isomorphism of G-sets

Y X = homG-Set(G ×X,Y ) � homSet(X,Y ).

Before proving this statement, the set homSet(X,Y ) of (not necessarily G-equivariant!)
functions from X to Y needs to be equipped with a G-action: for f ∈ homSet(X,Y ), let
g · f = fg , where

fg : X // Y , x 7→ g · (f (g−1 · x))

This is indeed a G-action, since fe = f , and

h · (g · f ) = h · fg : x 7→ h · (fg(h−1 · x))
= h · (g · (f (g−1 · h−1 · x)))
= hg · (f ((hg)−1 · x))

and also
(hg) · f = fhg : x 7→ hg · (f ((hg)−1 · x))

Proof. See Appendix B.3.
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3.3 Power Set and Quotients in G-Set

We would also like to have a power object in our new categories, which is what we will
explore now.

In Set, the power set can be constructed by giving an endofunctor P : Set // Set
that maps X to ΩX , the set of morphisms from X to Ω = {>,⊥}. A subset S ⊆ X then
corresponds to its characteristic function χS : X // Ω, where χS(x) = > if and only
if x ∈ S. Let us equip P (X) with an M-action as follows:

m · S = {m · x | x ∈ S} (6)

Then, indeed, e · S = S and

m · (m′ · S) = {m · x′ | x′ ∈m′ · S} = {m · (m′ · x) | x ∈ S} = {(mm′) · x | x ∈ S} = (mm′) · S

It is beyond the scope of this thesis to show that the set of subsets of X, equipped with
this M-action, is formally the categorical power object of X in M-Set (although we
know it must exist, since M-Set is a Boolean Topos [8, 22]). To our knowledge there is
no officially published literature making the power set construction explicit in M-Set,
but an interested reader may consult [22].

In G-Set, things are a little bit clearer: the subobject classifier is the discrete two-
element G-set Ω [18], meaning that g · b = b for all g ∈ G and both b ∈ Ω. A func-
tion χ ∈ΩX need not be equivariant; see Proposition 3.8. We have a G-action on χ by
(g ·χ) : x 7→ g ·χ(g−1 · x) and this corresponds exactly to the G-action on sets (that we
defined for M-sets):

χ(x) = g ·χ(e · x) = g ·χ(g−1 · g · x) = (g ·χ)(g · x).

So if Sχ corresponds to χ then, indeed, g · x ∈ g · S if and only if x ∈ S.

The power object of a G-set X is now given by PX = ΩX . Unlike in Set, elements
of this power object are not in bijection with subobjects. Subobjects have a special
property:

Definition 3.9. An M-set S is an equivariant subset of an M-set X if S ⊆ X and for all
m ∈M and x ∈ X:

x ∈ S =⇒ m · x ∈ S.

Equivalently, a subset S ⊆ X is equivariant if m · S ⊆ S holds for all m ∈M.

For a G-set X and S ⊆ X an equivariant subset, we can do even better than g · S ⊆ S for
all g ∈ G:

g · S ⊆ S = e · S = (gg−1) · S = g · (g−1 · S) ⊆ g · S.

Hence, S = g · S for all g ∈ G and S equivariant.

Lemma 3.10. Let X be a G-set. Subobjects (in G-Set) of X are in bijection with equiv-
ariant subsets of X.
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Proof. Without loss of generality, we can consider a subobject S �
� j // X as a subset of

X, since monomorphisms in G-Set are injective equivariant functions [18]. By defini-

tion, S is the pullback over X
χS // Ω 1too , for some unique χS ∈ΩX . But then χS

is a morphism in G-Set, so it must be equivariant. Hence, for all g ∈ G:

χS(g · x) = g ·χS(x) = χS(x),

where the second equality holds because the subobject classifierΩ is discrete. This just
means that x ∈ S if and only if g ·x ∈ S, so g ·S = S for all g. Hence, S is equivariant.

In any category, relations between objects X and Y are subobjects of the product X×Y .
Since the subobjects in G-Set are in bijection with equivariant subsets by Lemma 3.10,
relations are, by definition, equivariant subsets of the product in G-Set. To avoid con-
fusion, we will call them equivariant relations nonetheless.

Since G-Set is cartesian closed and has a subobject classifier Ω = 1 + 1 we can employ
the Equivariance Principle [18]:

Equivariance Principle. Functions and relations built from equivariant functions and re-
lations using classical higher-order logic are equivariant.

An equivalence w for a G-set X is an equivariant relation w ⊆ X ×X that is reflexive,
symmetric and transitive. The quotient map X // X /

w that maps x to its equiva-
lence class [x]w = {x′ ∈ X | x w x′} is equivariant, by equivariance of w:

∀g ∈ G . x w x′ =⇒ g · x w g · x′.

Furthermore, since w is equivariant, the quotient set X
/
w inherits an action

g · [x]w = [g · x]w

from X, turning X /
w into a quotient G-set.

3.4 Finite Support and Categories of Nominal Sets

Until now the monoid M and the group G have been arbitrary. In defining nomi-
nal sets, we are interested in operations on names, for which we use two specific
monoids: the first being a monoid of elements acting as arbitrary renamings (some-
times called substitutions). Renamings may be non-injective, sending many names to
a single name. The second monoid we are interested in is the group of bijective renam-
ings with elements acting as permutations, so every name operation can be inverted.
The latter one is the building block for the traditional theory of nominal sets.

For this, first, let A be a countable infinite set whose elements a,b,c, . . . are called atoms
or names. Recall that End(A) denotes the monoid of endomorphisms of A as in Ex-
ample 3.3, and that Sym(A) denotes its submonoid of bijections, which forms a group
(Example 3.5).

An endomorphism σ ∈ End(A) is called finitary if {a ∈ A | σa , a} ⊆ A is finite. (To
avoid heavy use of parentheses in the future, we write σa to mean σ (a).) That is, an
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endomorphism is finitary if it leaves all but finitely many elements unchanged. It is
clear that the set of finitary endomorphisms on A forms a submonoid. We denote this
monoid by Rn(A), and call it the monoid of renamings.

If we take the finitary submonoid of Sym(A) instead of End(A), we end up with all
finitary bijections Pm(A), which we call the group of permutations. An overview of the
structures we have just described can be given as follows:

Rn(A) ≺ End(A)

Pm(A) ≺

≺

Sym(A)

≺

Here, ≺ means "is a submonoid of ". The lower two structures are groups, and the two
structures on the left contain only finitary endormorphisms. Those are the ones we are
interested in.

We call a finitary renaming elementary if it sends one element a ∈ A to some b ∈ A with
b , a and leaves all other elements of A unchanged, and write [b/a] for it.

The counterpart of an elementary renaming for permutations is called a swapping, and
is written (b a). For swappings, we have that (b a) · a = b and (b a) · b = a and (b a) · c = c
for all other c ∈ A with a , c , b.

Fix the monoid M = Rn(A) and the group G = Pm(A). We have two categories:

• Rn(A)-Set of Rn(A)-sets, where morphisms are Rn(A)-equivariant functions;
• Pm(A)-Set of Pm(A)-sets, where morphisms are Pm(A)-equivariant functions.

Since any action Rn(A)×X // X of an Rn(A)-set can be restricted to Pm(A), we have
a forgetful functor UPm : Rn(A)-Set // Pm(A)-Set that maps X to itself with this
restricted action. Any Rn(A)-equivariant function is obviously Pm(A)-equivariant, so
any morphism can be mapped to itself by UPm.

Consider some element x of a Pm(A)-set or Rn(A)-set X. We would like to know which
elements of A are relevant for x. If we think of x as a process, we are actually asking
what names occur in x.

In the following definition, recall that, for f ,g functions with domain X, and S ⊆ X,
writing f

∣∣∣
S

= g
∣∣∣
S

means that ∀a ∈ S . f (a) = g(a).

Definition 3.11. Let X be a Rn(A)-set. A subset S ⊆ A is a Rn-support for an element
x ∈ X if for all σ,σ ′ ∈ Rn(A):

σ
∣∣∣
S

= σ ′
∣∣∣
S

=⇒ σ · x = σ ′ · x.

If X is a Pm(A)-set, we range over all permutations π,π′ ∈ Pm(A) and call it a Pm-
support, or simply support.

In particular, if we use σ ′ = idA, then, if S is a Rn-support of x, we have the following
implication:

(∀a ∈ S . σa = a) =⇒ σ · x = x.

In other words, for a support S of x, any renaming that leaves all elements of S un-
changed will also leave x unchanged. Intuitively, this means that S contains at least all
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names that “occur” in x. Indeed, the least support (which we formally define later) is a
generalization of the set of free variables occurring in a process.

Recall that our aim is to generalize permutations and renamings on processes of a
process calculus. The syntax of these processes consists of finite strings of symbols.
Thus, any meaningful renaming or permutation on a process can be done by replacing
finitely many names. In other words: the support for a process is finite, and therefore,
all elements of the set of processes are finitely supported. This is generalized in the
following definition:

Definition 3.12. A nominal renaming set is an Rn(A)-set of which every element has
some finite Rn-support. A nominal permutation set is a Pm(A)-set of which every ele-
ment has some finite Pm-support.

The class of all nominal renaming sets forms a category whose morphisms are just as
in Rn(A)-Set, i.e., they are Rn(A)-equivariant functions. We denote this category by
NomRn

A , which is by definition a full subcategory of Rn(A)-Set.

Similarly, the class of all nominal permutation sets with Pm(A)-equivariant functions
forms a full subcategory NomPm

A of Pm(A)-Set. This is our main category of interest,
and we will denote it also by Nom. We call its objects nominal sets and its morphisms
equivariant functions (instead of nominal permutation sets and Pm(A)-equivariant func-
tions), whereas objects and morphisms in NomRn

A are still explicitly called nominal
renaming sets and Rn(A)-equivariant functions.

Since NomRn
A is a full subcategory of Rn(A)-Set and any Rn-support S for a Rn(A)-set

is also a Pm-support for a Pm(A)-set, the forgetful functor can be restricted to nominal
sets, which we will call U : NomRn

A
// Nom. The forgetful functor U has a left

adjoint [15].

Due to the many categories we just introduced, an overview of their connectedness is
given below. The lower two categories are full subcategories of the upper two.

Rn(A)-Set
UPm // Pm(A)-Set

NomRn
A

U //
� ?

OO

Nom
� ?

OO

In what follows, we give some useful alternative characterizations of support, where
we distinguish between nominal renaming sets and nominal permutations sets:

Lemma 3.13. Let X be a nominal renaming set. A subset S ⊂ A is a support for x ∈ X
if and only if, for all renamings σ ∈ Rn(A):

(∀a ∈ S . σa = a) =⇒ σ · x = x.

Proof. Omitted. See [8].

For nominal sets (i.e., nominal permutation sets), we have a third characterization:
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Lemma 3.14. Let x ∈ X for some nominal set and S ⊂ A. The following are equivalent:

(i) S is a support for x;

(ii) for all permutations π ∈ Pm(A), we have (∀a ∈ S . πa = a) =⇒ π · x = x;

(iii) ∀a,b ∈ A \ S . (b a) · x = x

Proof. Equivalence of (i) and (ii) follows from Lemma 3.13.

For (iii), see Proposition 2.1 in [18].

Example 3.15. Consider the Rn(A)-set A itself and let a ∈ A. In Lemma 3.13, the
implication holds trivially for any set S that contains a and for all renamings σ .
In particular, {a} is a Rn-support for a. Therefore, A is a nominal renaming set.

Example 3.16. Consider L = A ∪A ∪ {τ} and the syntax grammar from Exam-
ples 2.18 and 2.23, where A = {a | a ∈ A} and a = a for all a ∈ A. It is clear (by
definition) renamings σ act on elements of A. The actions can trivially be ex-
tended to A ∪A ∪ {τ} by σ · a := σ · a and σ · τ = τ . Note also that all elements
of L are finitely supported, since every element is just a single name (see Exam-
ple 3.15). This turns L into a nominal renaming set.
If we let S be the corresponding syntax functor for the syntax grammar

P ::= P + P | P ‖ P | α . P | nil

then this action can easily be extended to work on closed terms S∗∅ (or really
over any set of variables), by name-by-name substitution:

σ · (P +Q) = σ · P + σ ·Q
σ · (P ‖Q) = σ · P ‖ σ ·Q
σ · (α . P ) = σ ·α . σ ·Q

σ ·nil = nil

Every renaming action is just a recursive application, with the exception of σ ·α
in the third rule, where actual renaming takes place. This definition gives us
a renaming action on the syntax of CCS processes, and since processes contain
only a finite amount of names, every element of S∗∅ has finite support. This
shows that the set S∗∅ is a nominal renaming set.
This renaming is exactly the capture-avoiding substitution that we require, al-
though no “captures” are avoided here. This will be done later, when we define
name abstraction.

For every nominal (renaming or permutation) set X, there is a function suppX (or supp
if X is clear from the context) that gives the least support (Rn-support or Pm-support),
of each element x of X. This set suppX(x) is given by the intersection of all finite
supports of x. Since all x ∈ X are finitely supported by definition, suppX(x) is always
finite.
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If X is a nominal permutation or renaming set then suppX(x) ⊆ A is a finite subset for
all x ∈ X, and therefore an element of Pω(A). Using the action on subsets defined in
(6), then, the function suppX is equivariant if X is a nominal permutation set. That is,
π · supp(x) = supp(π · x) for all π ∈ Pm(A) and x ∈ X [18].

For nominal renaming sets, we have a slightly weaker, but still significant result:

Lemma 3.17. Let X be a nominal renaming set. For all x ∈ X and σ ∈ Rn(A), we have:

supp(σ · x) ⊆ σ · supp(x)

Proof. Recall that σ ·supp(x) = {σ ·x | x ∈ supp(x)}. We show that σ ·supp(x) is a support
for σ · x, because then, certainly, it contains the least support supp(σ · x).

Use Definition 3.11 and consider two renamings τ,τ ′ such that τ
∣∣∣
σ ·supp(x)

= τ ′
∣∣∣
σ ·supp(x)

.

This just means that τ(σa) = τ ′(σa) for all a ∈ supp(x). Hence, (τ ◦ σ )
∣∣∣
supp(x)

= (τ ′ ◦
σ )

∣∣∣
supp(x)

, and by definition of support, then, (τ ◦ σ ) · x = (τ ′ ◦ σ ) · x. Thus, τ · (σ · x) =

τ ′ ·(σ · x), which was to be shown. We conclude that σ ·supp(x) is a support for σ ·x.

The action on some element x ∈ X can be restricted to the minimal support of x, as
stated in the following lemma:

Lemma 3.18. Let X be a nominal renaming set. The following implication holds for
all renamings σ,σ ′ ∈ Rn(A):

σ · x = σ ′ · x =⇒ σ
∣∣∣
supp(x)

· x = σ ′
∣∣∣
supp(x)

· x.

Proof. Immediate from Definition 3.11 and the fact that supp(x) is a support for x.

Finally, we can characterize the support of Pm(A), which is a Pm(A)-set, as follows:

Lemma 3.19. The Pm(A)-set Pm(A) with the conjugation action π�π′ = π◦π′ ◦π−1, is
a nominal set, and

supp(π) = {a ∈ A | πa , a}

Proof. Omitted. See [18].

3.5 Constructions in the Category of Nominal Sets

We prove that Nom is cartesian closed in this section, and we give some other con-
structions.

Lemma 3.20 (2.12 in [18]). Let X,Y be Pm(A)-sets and X
f // Y an equivariant func-

tion. If A ⊆ A supports x ∈ X, then it supports f (x). Furthermore, if f is injective, then
A ⊆ A supports x if and only if it supports f (x).
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Corollary 3.21. If X,Y are nominal sets and X �
� f // Y is equivariant, then

suppY (f (x)) ⊆ suppX(x),

where equality holds if f is injective.

Proof (of Lemma 3.20). Use Definition 3.11 for A being a support for x: for all π ∈
Pm(A), we have

(∀a ∈ A . πa = a) =⇒ π · x = x =⇒ f (x) = f (π · x) = π · f (x),

where the last equality holds by equivariance of f , so we see that A supports f (x) too.

If f is injective and A supports f (x), then

(∀a ∈ A . πa = a) =⇒ π · f (x) = f (x) =⇒ f (π · x) = f (x) =⇒ π · x = x,

where injectivity is used in the last implication. This shows that A also supports x.

The following lemma will be important to show that Nom is Cartesian closed.

Lemma 3.22. Nom is a coreflective subcategory of Pm(A)-Set.

Proof. We show that the inclusion functor I : Nom � � // Pm(A)-Set has (−)fs as a right
adjoint, where Xfs := {x ∈ X | x has finite support}. Note that Xfs ⊆ X is equivariant:
any permutation π is finitary, so x ∈ X has finite support if and only if π · x has finite
support. The action on Xfs is inherited from X.

To show that I a (−)fs, we show that, for Y a nominal set and X a Pm(A)-set, there is a
(natural) isomorphism of sets:

homPm(A)-Set(Y ,X) � homNom(Y ,Xfs),

The set Y is nominal, so the finite support supp(y) for y is also a support of f (y),
by Lemma 3.20. Therefore, for the isomorphism we can just take the identity, and
naturality then follows easily.

Coproducts and products in Nom are just like in Pm(A)-Set. Finite products of nomi-
nal sets as in Pm(A)-Set are again nominal sets: for nominal sets X1, . . . ,Xn, the support
of an element (x1, . . .,xn) ∈ X1 × . . .×Xn is the union of the supports for x1, . . . ,xn.

However, elements of infinite products need not be finitely supported. For infinite
products of a collection {Xi}i∈I , the product is given by (

∏
i∈I Xi)fs.

Proposition 3.23. Nom is Cartesian closed.

Proof. We have described the finite product (just as in Pm(A)-Set), so it remains to
show that Nom has exponents. We claim that the exponent in Nom is given by restrict-
ing the exponent in Pm(A)-Set to finitely supported subsets, i.e., there is a natural
isomorphism homNom(Z ×X,Y ) � homNom(Z, (Y X)fs).
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Indeed, we have a sequence of natural isomorphisms

homNom(Z ×X,Y ) � homPm(A)-Set(Z ×X,Y ) � homPm(A)-Set(Z,Y
X) � homNom(Z, (Y X)fs),

The first isomorphism is because Nom is a full subcategory and finite products are the
same in both categories. The second isomorphism is by definition of exponentiation in
Pm(A)-Set. Finally, the last isomorphism holds by Lemma 3.22.

Relations between two objects X and Y in Nom are again equivariant subsets of the
productX×Y , just as in Pm(A)-Set. This is because their products coincide, and Nom is
a full subcategory, so subobjects in Nom correspond to subobjects in Pm(A)-Set.

A power object PX in Nom is given by restricting the power object PX in Pm(A)-Set
(which contains all subsets) to all finitely supported subsets of X. The power object
PX of a nominal set X is thus given by (ΩX)fs. To be explicit, we will write Pfs(X) for
the power objects in Nom, and call it the nominal power set.

The following lemma for finitely supported subsets will be useful later:

Lemma 3.24. Let X be a Pm(A)-Set. A subset A ⊆ A supports an element S ∈ PfsX if
and only if for every permutation π ∈ Pm(A):

(∀a ∈ A . πa = a) =⇒ ∀x ∈ S . π · x ∈ S

Proof. Omitted. [18]

Quotient sets in Nom are as in Pm(A)-Set.

Lemma 3.25. If X is a nominal set and w is an equivariant equivalence relation, then

supp([x]w) =
⋂
y∈[x]w

supp(y)

for all x ∈ X.

Proof. Omitted. [18]

We conclude this section with the Finite Support Principle [18], which holds by merit of
Nom being Cartesian closed and having a subobject classifier:

Finite Support Principle. Functions and relations built from finitely supported functions
and relations using classical higher-order logic are finitely supported.

3.6 Freshness: Avoid Colliding Names

In this section, we formalize the notion of freshness, which, intuitively, expresses that a
name does not already occur in an element, e.g., a process.

By writing a freshness assertion x # y, with x ∈ X and y ∈ Y , we mean to say that
suppX(x)∩ suppY (y) = ∅.
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Example 3.26. Many transition specification rules for name-passing process cal-
culi contain freshness conditions. Consider, e.g., the Rule ParL in Example 2.30:

x
α−→ x′ ParL

x ‖ y α−→ x′ ‖ y

If α represents an input action, written P
a(b)
−−−→ P ′ in a π-calculus, then the name

b represents a new, local, binding name within the scope of P ′.
This means that, if we apply Rule ParL and thus expand the scope of the locally

instantiated name b, like we do with Q in P ‖ Q
a(b)
−−−→ P ′ ‖ Q, then this name b

should not clash with any name already occurring in Q.
We therefore add the freshness condition b # y to the rule:

x
a(b)
−−−→ x′ b 0 y

x ‖ y
a(b)
−−−→ x′ ‖ y

By writing b 0 y in this rule we mean that b # φ(y) whenever we apply some
ground substitution φ : {x,x′,y} // S∗∅. The freshness assertion has b ∈ A and
φ(y) ∈ S∗∅, and then b # φ(y) says that {b} ∩ supp(φ(y)) = ∅, which is true if and
only if b < supp(φ(y)).

The way the freshness assertion in Example 3.26 is used is most frequent: for x # y
we often use some x ∈ A and y in some nominal set Y , which is true if and only if
x < suppY y. Since Y is a nominal set, whose elements all have finite support, there is
always an infinite amount of names to choose that are fresh in y.

Lemma 3.27. For X
f // Y in Nom and a ∈ A we have:

a # x =⇒ a # f (x)

Proof. Quite immediate from Lemma 3.20.

3.7 Abstraction: Formalize Local Binding Names

In what follows we show how the local instantiation of new names, also called binding
names, are generalized in Nom. For this, we first define the notion of α-equivalence.
We use definitions and results from [18] and skip the formal construction (which uses
a third quantifier Nbesides ∃ and ∀).

Definition 3.28. Let X,Y be nominal sets. We define α-equivalence on X × Y , written
≈α, to be a binary relation such that (x,y) ≈α (x′, y′) if and only if

∃π ∈ Pm(A) . π · (x,y) = (x′, y′)∧π # (suppY (y) \ suppX(x))∧ supp(π) ⊆ supp(x,x′).
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This relation is an equivalence:

• reflexivity follows from taking the identity permutation,
• symmetry follows from taking the inverse permutation, and
• transitivity follows from taking the composition of the two permutations.

We are mostly interested in binding names from A, so for X = Ak for some k > 0.
For this, we have (a1, . . ., ak ,x) ≈α (a′1, . . ., a

′
k ,x
′) if and only if there is a π such that π ·

(a1, . . ., ak ,x) = (a′1, . . ., a
′
k ,x
′) andπa , a implies that a < supp(y) and a ∈ {a1, . . . , ak , a

′
1, . . . , a

′
k}.

For k = 1 in particular, we have the following result, which is a standard characteriza-
tion of α-equivalence:

Lemma 3.29. For α-equivalence on A×X, we have

(a,x) ≈α (a′,x′) ⇐⇒ (a,x) = (a′,x′)∨ (a′ # (a,x)∧ x′ = (a a′) · x).

Proof. Note that if supp(π) ⊆ {a,a′}, then either π = (a a′) for some a , a′ (meaning
a′ # a) or π is the identity. Also, (a a′) # (supp(x′) \ {a}) holds true if and only if a′ <
supp(x′), which is the same as a′ # x.

Definition 3.30. For X a nominal set, the abstraction
[
Ak

]
X of Ak in X is the quotient of

Ak ×X by ≈α. Elements of
[
Ak

]
X, i.e., equivalence classes [(a1, . . . , ak ,x)]≈α are written

〈a1, . . . , ak〉x.

NB: the notation using angled brackets for name abstraction is an unfortunate clash
with the notation we used for output of names in the π-calculus that we used in Sec-
tion 0.

Since Nom has quotients, an abstraction
[
Ak

]
X has a Pm(A)-action which is well-

defined as
π · 〈a1, . . . , ak〉x = 〈(πa1, . . .,πak)〉(π · x)

Abstraction
[
Ak

]
(−) is an endofunctor on Nom [18].

One can think of elements of an abstraction as terms with a locally instantiated name.
Examples of this are the λ-calculus term λx.M (formally 〈x〉M) or the input prefixed
π-calculus term a(b) . P (formally (a,〈b〉P )).

In process calculi, the capture-avoiding substitutions are mappings that need not be
injective, so we would also like to have the abstraction endofunctor for nominal re-
naming sets.

This lifting is known in the literature [8], but, to our knowledge, this is the first time it
has been generalized to abstraction of several names.

Lemma 3.31. The endofunctor
[
Ak

]
(−) for k > 0 lifts along the forgetful functor U :

NomRn
A

// Nom as follows: for X a nominal renaming set, we define an Rn(A)-
action on

[
Ak

]
X by

σ · 〈a1, . . . , ak〉x = 〈a1, . . . , ak〉(σ · x) where a1, . . . , ak <Wσ .
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where Wσ = {a | σa , a} ∪ {σa | σa , a}

Notice that we can finally see avoidance of capture formally at work here: the bound
names ai are ‘silently renamed’ to names that are not in any way involved with σ .

Proof. Let us first check that this Rn(A)-action is well-defined. That is, for X a nominal
renaming set, and ≈α the α-equivalence relation on Ak×UX, we need to make sure that
the following implication holds:

(a1, . . . , ak ,x) ≈α (a′1, . . . , a
′
k ,x
′) =⇒ (a1, . . . , ak ,σ · x) ≈α (a′1, . . . , a

′
k ,σ · x

′) (7)

whenever a1, . . . , ak , a
′
1, . . . , a

′
k <Wσ .

So let (a1, . . . , ak ,x) ≈α (a′1, . . . , a
′
k ,x
′). We let A = {a1, . . . , ak , a

′
1, . . . , a

′
k}. Using Defini-

tion 3.28, we get a permutation π for which πai = a′i for all i ∈ {1, . . . , k} and π · x = x′.
Moreover, π # (supp(x) \ {a1, . . . , ak}) and supp(π) ⊆ A. To prove (7), it suffices to show
now that π · (σ · x) = σ · x′ and π # (supp(σ · x) \ {a1, . . . , ak}).

By choice of a1, . . . , ak , a
′
1, . . . , a

′
k and definition of Wσ , we have:

∀a ∈ A . σx = a ⇐⇒ x = a (8)

Recall form Lemma 3.19 that supp(π) = {a ∈ A | πa , a}. Note also that supp(π) =
supp(π−1) since πa = a ⇐⇒ a = π−1a.

First, we claim that π ·A = A: indeed, suppose for contradiction that πa < A for some
a ∈ A. Since A ⊇ supp(π) = supp(π−1), it follows that πa < supp(π−1). By definition of
supp(π−1), then, π−1(πa) = πa, so πa = a ∈ A, but we assumed that πa < A.

Our claim is now that σ ◦π = π ◦ σ .

• If a ∈ A, then π(σa) = πa = σ (πa). Both equalities hold by (8), using first that
a ∈ A, and then that πa ∈ π ·A = A.

• If a < A, then σ (πa) = σa. Suppose π(σa) , σa, then σa = a′ for some a′ ∈ A. By
(8), then, a = a′, so a ∈ A, which is a contradiction. Therefore, our assumption
that π(σa) , σa was false.

The claim follows from these two cases. From this and x′ = π · x, it follows that

σ · x′ = σ · (π · x) = (σ ◦π) · x = (π ◦ σ ) · x = π · (σ · x)

To finish the proof of (7), note that if a ∈ supp(π), then a < (supp(x) \ {a1, . . . , ak}), and
a ∈ A, so σa = a by (8). There are two cases to distinguish for a < (supp(x) \ {a1, . . . , ak}):

• If a ∈ supp(x), then a ∈ {a1, . . . , ak}, and so a < supp(σ · x) \ {a1, . . . , ak}.

• If a < supp(x), note that σ · supp(x) ⊇ supp(σ · x) b

Finally, if σ is a permutation, then the choices of a1, . . . , ak furthermore ensure that
〈a1, . . . , ak〉σ · x = 〈σa1, . . . ,σak〉σ · x = σ · 〈a1, . . . , ak〉x, showing that the Pm(A)-actions for[
Ak

]
UX and U

[
Ak

]
X coincide.

Hence,
[
Ak

]
(−) lifts along U .
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4 Nominal Transition Systems

In Section 2, we outlined the theory underlying transition systems and in Section 3,
we described a categorical structure that supports name binding and substitution of
names. In this section we explore how these two theories combine into nominal tran-
sition systems, where the set of states and the set of labels are nominal sets and the
transition relation is equivariant.

Like with transition systems of sets, we aim to find a correspondence between coalge-
bras and transition systems. As we will see, the challenge herein is to find a structure
for the labels of the transition system in such a way that it corresponds to the use of a
label functor in the coalgebra. This is because, ideally, the abstraction endofunctor is
used in the label functor to model, e.g., input, as input uses binding names.

4.1 Coalgebras in Nom: Nominal Transition Systems

Transition systems of nominal sets can be straightforwardly defined as follows:

Definition 4.1. A nominal transition system (NTS) is a triple (X,L,→) where the carrier
X is a nominal set, L is a nominal set of labels, and the transition relation→⊆ X×(L×X)
is equivariant.

The quadruple is called a nominal renaming transition system ifX is a nominal renaming
set.

We will assume the following structure on the nominal set of labels:

Assumption 4.2. We will assume that L is of the form

L =
t∐
i=1

Aki ,

for some t ∈ N>0 and k1, . . . , kt ∈ N≥0.

An important remark here is that the transition relation of a nominal renaming tran-
sition system, by definition, need not be Rn-equivariant. That is, for any permutation

π ∈ Pm(A), if x
l−→ y is a transition in some nominal transition system (with or without

renaming), then (π · x)
(π·l)
−−−−→ (π · y) always, whereas this does not hold true in general

for renamings σ ∈ Rn(A).

Nominal renaming transition systems are therefore just nominal transition system,
but with a set of states carrying a renaming action. As per Lemma 3.31, this renaming
action is the usual capture-avoiding substitution used in many process calculi.

Like in [1, 6, 24], we refer to elements of L×X as residuals . A residual thus consists of
a label and a target.

We will write ιi for i ∈ {1, . . . , t} for the injection into L that corresponds to the ith
component of the coproduct. They will also denote injections into L×X: it should be
clear from the context which of the two injection is meant.
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As we will prove shortly, nominal transition systems are coalgebras in Nom, just as
transition systems of sets are coalgebras over Set. Let L be the label functor, i.e., an
endofunctor on NomPm

A of the form

L(−) =
t∐
i=1

Aki × (−), (9)

where t ∈ N>0 and k1, . . . , kt ∈ N≥0. Note that, with t and all ki fixed, LX � L×X for all
nominal sets X.

Intuitively, L describes the labels of the transition relation, t is the number of terms or
the number of ‘kinds’ of labels, and each ki determines the number of names in those
kinds of labels.

Example 4.3. Let X be a nominal set. To model input, output, and silent transi-
tions, put

L = A2 +A2 + 1

We have L×X � (A2 ×X) + (A2 ×X) +X, and so, L×X = LX for the endofunctor

L(−) = A2 × (−) +A2 × (−) + (−),

where we use t = 3, k1 = k2 = 2, and k3 = 0.
In the π-calculus, it is customary to write the labels above the arrow. This can be
done in the following way:

x
a(b)
−−−→ y :⇐⇒ x → ι1(a,b,y)

x
a〈b〉
−−−→ y :⇐⇒ x → ι2(a,b,y)

x
τ−→ y :⇐⇒ x → ι3(y)

Although the nominal set of states X can contain name abstractions, none of the
names in this equivariant transition system relation are bound in any formal way.
Thus, as we will explain in more detail later, this is not how input transitions

should be modeled, as the name b in a transition x
a(b)
−−−→ y is supposed to be a

binding name whose scope is y.

From now on, the endofunctor B is fixed as follows:

Definition 4.4. The endofunctor B : Nom // Nom is given by Pfs ◦L. That is,

BX = Pfs(L×X)

for every nominal set X.

The following lemma connects this functor to nominal transition systems:

Lemma 4.5. To give a B-coalgebra is to give a nominal transition system.

50



Proof. The equivariant relation→ in Nom is an equivariant subset, and therefore, the
characteristic function χ→ is an equivariant function (Lemma 3.10). Hence, the rela-
tion → corresponds to a morphism χ→ : X × LX // Ω in NomPm

A , and through the
natural bijection homNom(X×LX,Ω) � homNom(X, (ΩLX)fs), this in turn corresponds to
a morphism X // PfsLX, which should be our coalgebraic structure. For a ground
transition system (X,L,→) and a B-coalgebra g : X // BX, we explicitly correspond
between the two by:

x→ ιi(a1, . . ., aki , y) ⇐⇒ ιi(a1, . . ., aki , y) ∈ g(x)

We would like our transition system to also support capture-avoiding substitutions,
for which we can use the extra structure of nominal renaming sets. Recall that U :
NomRn

A
// Nom is the forgetful functor.

Definition 4.6. A U -structured B-coalgebra, or BU -coalgebra for short, is a pair (X,β),
where X is an object of NomRn

A , and β : UX // BUX is a B-coalgebra structure (a
morphism in Nom) on UX.

This way, our transition system of nominal sets can be accompanied by a capture-
avoiding substitution structure on the set of states X. Indeed, the following corollary
is straightforward:

Corollary 4.7. To give a BU -coalgebra is to give a wide-open transition system of nom-
inal sets.

4.2 Algebras in Nom: Syntax with Alpha-Equivalence

With transition systems of sets, in Section 2, we used a polynomial endofunctor S
(using product and coproduct) to describe some syntax. Here we will do the same, but
we will add the abstraction endofunctor to S. This will provide us to work with terms
up to α-equivalence, which is how terms with locally instantiated names in process
calculi are interpreted.

Compare the following definition with Definition 2.16:

Definition 4.8. [7] An algebraic binding signature is a set Σ of function symbols with,
for each function symbol f ∈ Σ, a name-arity ]A(f) ∈ N and a term-arity ]X(f) ∈ N. Fur-
thermore, to each term of each function symbol is associated a number of binding
names ]bn(f)(i), where i ∈

[
1, ]X(f)

]
indicates the ith term of the function symbol f.

Like in Section 2, for X a set, ΣX denotes the set of Σ-terms, where only one operator
has been applied on elements of X, and Σ∗X denotes the smallest set that contains X
and is closed under application of operators of Σ.

For X a set, we write elements of ΣX as

f(a1, . . . , a]Af,〈b
1
k〉k∈[1,]bn(f)(1)]x1, . . . ,〈bnk 〉k∈[1,]bn(f)(n)]xn),

which is quite a laborious task because of the fact that every term is accompanied by
a number of binding names. To avoid such tedious expressions, we will use shorthand
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notations ã = a1, . . . , a]A(f) and 〈̃bi〉 = 〈bik〉k∈[1,]bn(f)(i)], and leave the values of ]A(f) and
]bn(f)(i) for i ∈

[
1, ]X(f)

]
implicit, whenever they should be clear from the context. The

expression above will then be

f(ã, 〈̃b1〉x1, . . . , 〈̃bn〉xn)

The reader should be very careful with the interpretation of the angular brackets 〈·〉
here: they should not (yet) be interpreted as elements of name abstractions. At this
point, it is just raw syntax.

Example 4.9. A portion of an algebraic binding signature for the π-calculus is
Σ = {nil, in,out,par,sum}, with

f ∈ Σ ]A(f) ]X(f) ]bn(f)(. . .)
nil 0 0 -
in 1 1 ]bn(in)(1) = 1
out 2 1 ]bn(out)(1) = 0
par 0 2 ]bn(par)(1) = ]bn(par)(2) = 0
sum 0 2 ]bn(sum)(1) = ]bn(sum)(2) = 0

If P ,Q ∈ X for some nominal set X, then par(P ,Q) is often denoted P ‖ Q. Simi-
larly, for some a,b ∈ A, the term in(a,〈b〉P ) is better known as a(b) . P .

For a category C with finite product, coproduct, and abstraction, we can associate an
endofunctor S : C // C to an algebraic binding signature Σ, where

SY =
∐
f∈Σ

(
A]A(f) ×

[
A]bn(f)(1)

]
Y × · · · ×

[
A]bn(f)(]X (f))

]
Y
)

(10)

Each term of the coproduct then represents an operator f of the signature, carrying
]A(f) free names and ]X(f) terms with an amount of binding names equal to ]bn(f)(i).

This initial algebra of closed Σ-terms is the algebra of interest:

Lemma 4.10. If S corresponds to a algebraic binding signature Σ as described in (10),
then the set S∗∅ = Σ∗∅ of closed Σ-terms carries an initial algebra structure for the
syntax functor S.

Proof. Omitted. [7]

Example 4.11. For C = Set, using the product Ak ×X for the abstraction endo-
functor, the initial algebra for S contains all raw closed Σ-terms. A term 〈b〉x,
e.g., being raw means that it is only syntax: the name b here is not in any formal
way a binding name.
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Example 4.12. For C = Nom, using the abstraction endofunctor in Defini-
tion 3.30, and for C = NomPm

A , using the lifting one from Lemma 3.31, the initial
algebra contains all closed Σ-terms up to α-equivalence. This is exactly how we
want to interpret a term such as 〈b〉x.
Moreover, in NomPm

A we can equip the terms up to α-equivalence with the re-
naming action of NomPm

A , which is the usual capture-avoiding substitution used
in process calculi.
If, for example, we want to perform the elementary renaming [c/b] on a
term in(a,〈b〉(out(a,b,nil))) in NomPm

A (see Example 4.9, think of this term as
a(b) . a〈b〉 . nil), then Lemma 3.31 says that this can be done as follows:

[c/b] · (in(a,〈b〉(out(a,b,nil)))) = in([c/b]a,〈x〉([c/b] ·out(a,x,nil)))

where x < {b,c}. Notice that we have silently renamed the binding name b to x. We
are allowed to do this, since, by abstraction, 〈b〉out(a,b,nil) = 〈x〉out(a,x,nil).

4.3 Binding Names in NTS Labels

In the previous section, we provided a mathematical model that lets us interpret, e.g.,
a term 〈b〉x as a term up to α-equivalence. For this, we used abstraction in Nom.

We point out now that, in a similar way, a name b of an input transition x
a(b)
−−−→ y is

usually interpreted as a binding name, whose scope is y. As we can see in Example 4.3,
however, this is not in any way underpinned by abstraction, like was done with Σ-
terms up to α-equivalence in the previous section.

In what follows we try to motivate our ambition to interpret b as a binding name in
y, and we aim to make this formal in the nominal transition system in a more general
way. Later, we will see how this relates to using abstraction (besides product and
coproduct) in the label functor L defined in (9) for the coalgebra that corresponds to
the NTS.

Consider the rule for communication in the early semantics 2 of the π-calculus (we
also include the rule for early input):

P
a〈b〉
−−−→ P ′ Q

a(b)
−−−→Q′

Comm-Early
P ‖Q τ−→ P ′ ‖Q′

(11)

In this rule, the name that is sent by P needs to be exactly the same as the name
received by Q. But suppose Q , a(c) . a〈c〉 . nil. Many process calculi will have a

rule specifying that then Q
a(c)
−−−→ a〈c〉 . nil. But then, how can Q receive a name b , c

through a from another process P ? The bound name c in the transition needs to be
replaced by b first.

2The word ‘early’ here refers to the moment that substitution of the input name takes place, and not
to the time in which the semantics was conceived. Early and late substitution in communication rules
has been studied and is sometimes referred to as internal and external mobility. [20]
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One could argue now thatQ, as a term, is α-equivalent to a(b) . a〈b〉 . nil, and that there
is no issue here. Note, however, that we do not want to presuppose a syntax structure
on the states: they only serve for illustrative purposes here. We wish to formalize the
concept of binding names solely in terms of the nominal transition system itself (and
later, the coalgebra).

Moreover, even when considering this particular syntax and realizing that we have
Q ≈α a(b) . a〈b〉 . nil, it still seems fruitful, necessary even, to require that a transition
is independent on the choice of representative from the α-equivalence class of the
source.

Our goal is now to formulate this requirement for an NTS. For this, we have to know
which names in the label are supposed to be binding. We therefore update our defini-
tion of a nominal transition system as follows:

Definition 4.1 (Updated). A nominal transition system is a quadruple (X,L,→,bn) where
the carrier X is a nominal set, L is a nominal set of labels, the transition relation→ ⊆
X × (L ×X) is equivariant, and bn : L // Pω(A) is an equivariant function giving a
subset of names such that bn(l) ⊆ suppL(l) for all l ∈ L.

The quadruple is called a nominal renaming transition system ifX is a nominal renaming
set.

The function bn does not change anything to the interpretation of the set of names that
it gives, but it enables us to formulate a property that establishes some names as being
binding in the target of a transition. This can be done in two possible ways:

Definition 4.13. We say that a nominal transition system (X,L,→,bn) satisfies strong

alpha-conversion of residuals (SACR) if for all transitions x
l−→ y and for all b ∈ bn(l):

∀a ∈ A . a # (l,y) =⇒ x
(a b)·l
−−−−−→ (a b) · y.

It satisfies weak alpha-conversion of residuals (WACR) if for all transitions x
l−→ y and for

all b ∈ bn(l):

∀a ∈ A . a # (l,y,x) =⇒ x
(a b)·l
−−−−−→ (a b) · y.

The difference between strong and weak alpha-conversion is the freshness condition
in the assumption of the implication. For both versions we need a # l, for strong con-
version a # y suffices, whereas for weak conversion, a # x is required in addition.

It is clear that any NTS that satisfies SACR also satisfies WACR.

Note that the authors of [1, 6, 24] refer to strong alpha-conversion of residuals as just
alpha-conversion of residuals, but we wish to explicitly distinguish between strong
and weak alpha-conversion for reasons that will become clear later.

Also, the property of (strong) alpha-conversion of residuals is included in the defini-
tion of nominal transition systems in [1, 6, 24].
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Example 4.14. Recall the endofunctor B from Definition 4.4. Any B-coalgebra is
a nominal transition system that satisfies SACR if we define bn to give the empty
set for all labels by Lemma 4.5, as the property of SACR then quantifies over the

emptyset bn(l) for every transition x
l−→ y, and is therefore vacuously satisfied.

Example 4.15. The nominal transition system of Example 4.3 needs to be ex-

tended with a function bn. For a transition x
l−→ y, we let bn : l 7→ {b} if and only

if l = ι1(a,b) and bn(l) = ∅ otherwise. (Recall that we made the first injection ι1
correspond to input.)

Then, if we have, e.g., a transition x(b) . y〈b〉 . nil
x(b)
−−−→ y〈b〉 . nil, if the NTS satisfies

SACR or just WACR, we also have x(b) . y〈b〉 . nil
x(a)
−−−→ y〈a〉 . nil for any name

a < {x,y} (x occurs in the label, and y occurs in the target, as well as the source).

Now consider P , x(b) . y〈b〉 . nil+ z〈z〉 . nil with a transition P
x(b)
−−−→ y〈b〉 . nil. If

the system satisfies SACR, then we also have P
a(z)
−−−→ y〈z〉 . nil, since z is fresh in

the label and in the target y〈b〉 . nil. However, for WACR, this is not necessarily
the case, since z is not fresh in the source P .

Since Definition 4.1 has been updated, Lemma 4.5 and Corollary 4.7 are no longer
valid. In order to reclaim their validity, we need to add an important assumption on
the structure of bn. For this, recall from Assummption 4.2 that L =

∐t
i=1Aki .

Assumption 4.16. For each coproduct term, the number of binding names is the same
for all labels therein:

∀ιi(a1, . . . , aki ), ιj(a
′
1, . . . , a

′
kj

) ∈ L . i = j =⇒ |bn(ιi(a1, . . . , aki ))| = |bn(ιj(a
′
1, . . . , a

′
kj

))|.

Furthermore, the names are ordered in such a way that all binding names occur last:

∀ιi(a1, . . . , aki ) ∈ L . m = |bn(ιi(a1, . . . , aki ))| =⇒ bn(ιi(a1, . . . , aki )) = {aki−m+1, . . . , aki }

This assumption is not unworkable when we consider the π-calculus, for example,
where every input label has exactly one binding name. Moreover, assuming the bind-
ing names occur last in the label (or at least have a fixed position) is also in line with
common practice in process calculi.

Finally, to reestablish the correspondence of B-coalgebras with nominal transition sys-
tems, we have to equip a B-coalgebra with a function b : {1, . . . , t} // N indicating the
number of binding names for each coproduct name.

We reiterate the correspondence between B-coalgebas and nominal transition systems:

Lemma 4.4 (Updated). To give a B-coalgebra with a function b : {1, . . . , t} // N is to
give a nominal transition system.
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Proof. The only new thing we have to show is correspondence between the functions
b and bn. By Assummption 4.16, the number of binding names for the ith coproduct
term is fixed. Call this number mi . Thus, we can correspond between b and bn by

b : i 7→mi ⇐⇒ bn : ιi(a1, . . . , aki ) 7→ {aki−mi+1, . . . , aki }

Corollary 4.7 is in the same way still valid if a BU -coalgebra is equipped with a function
b : {1, . . . , t} // N.

4.4 Coalgebras with Name Abstraction

We have seen that nominal transition systems are coalgebras equipped with some func-
tion indicating the number of binding names for each type of label. However, the
function bn in this correspondence is not used in any way to require that the names
are binding. This only happens when we say that the NTS satisfies strong or weak
α-conversion of residuals.

In this section we look at coalgebras where the label functor L uses the abstraction
endofunctor, and we investigate the manner in which this relates to the properties
SACR and WACR. Will abstraction in the label functor be the way to model name
binding in the nominal transition system?

With the function b indicating the number of binding names for a B-coalgebra, we
let

B̃ = PfsL̃ with L̃Y =
t∐
i=1

Aki−b(i) ×
[
Ab(i)

]
Y

There should be enough names to bind in the i-th term, so we assume b(i) ≤ ki for all
i ∈ {1, . . . , t}.

We are interested in the relation between this kind of coalgebra with nominal tran-
sition systems. Since B-coalgebras are nominal transition systems by Lemma 4.5, it
is fruitful to investigate to relation between B-coalgebras and B̃-coalgebras, where we
assume that t (the number of coproduct terms) and ki for all i ∈ {1, . . . , t} (the number
of names involved in every coproduct term) are the same for L in B and L̃ in B̃.

We will claim in Theorem 4.21 that B̃-coalgebras are B-coalgebras satisfying the fol-
lowing property:

Rule (?). Let (X,g) be a B-coalgebra. We say that g satisfies Rule (?) if

(?) ∀i ∈ {1, . . . , t}. ∀a1, . . . , aki ∈ A. ∀x,y ∈ X.
ιL,i(a1, . . . , aki , y) ∈ g(x) =⇒ {aki+1−b(i), . . . , aki } # {x,a1, . . . , aki−b(i)}

That is, the binding names in the label of any transition are fresh in the source and
distinct from the other names in the label.

Example 4.17. In Example 4.3 we gave an NTS, which was a B-coalgebra with

L(−) = A2 × (−) +A2 × (−) + (−).
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Here, t = 3, k1 = k2 = 2, and k3 = 0. Recall that the first coproduct term repre-
sented input, so let b : {1,2,3} // N be such that b(1) = 1 (one binding input
name) and b(2) = b(3) = 0.
If this B-coalgebra satisfies Rule (?), then the freshness relations are vacuously
satisfied for i ∈ {2,3}. For i = 1, the rule says that if ιL,1(a,b,y) ∈ g(x) =⇒ b # {a,x}.

In the nominal transition system, this means that b # {a,x} whenever x
a(b)
−−−→ y.

By merit of Rule (?), the entire equivalence class (restricted to suitably fresh names) is
part of the set of transition targets for x if only one member is:

Lemma 4.18. Let (X,g) be a B-coalgebra satisfying Rule (?) and ιL,i(a1, . . . , aki , y) ∈ g(x)
for some (a1, . . . , aki , y) ∈ Aki × X and x ∈ X. To relieve us from some heavy notation,
write ã = a1, . . . , aki−b(i) for the free names, ã = aki+1−b(i), . . . , aki for the bound names, and
b̃ = b1, . . . , bb(i). We then have

∀(̃b,y′) ∈ Ab(i) ×X . (̃b,y′) ≈α (ã, y)∧ {̃b} # {x, ã} =⇒ ιL,i(ã, b̃, y
′) ∈ g(x)

Proof. Let (̃b,y′) ∈ Ab(i) ×X where (̃b,y′) ≈α (ã, y) and {̃b} # {x, ã}. By Rule (?), we have
{ã} # {x, ã}.

By definition of α-equivalence, there is π such that π · (ã, y) = (̃b,y′) with supp(π) ⊆
{̃b, ã}. Since {̃b, ã} # {ã}, then, we have π · ã = ã.

Since {̃b} # x and {ã} # x and g is equivariant, we obtain {̃b, ã} # g(x) by Lemma 3.27.
But then π # g(x), because supp(π) ⊆ {̃b, ã}. From this, we know that

∀a ∈ supp(g(x)) . πa = a,

and with this we can apply Lemma 3.24 to obtain

π · ιL,i(ã, ã, y) ∈ g(x).

The result follows then by realizing that π · ιL,i(ã, ã, y) = ιL,i(ã, b̃, y′).

Example 4.19. Consider the same NTS (B-coalgebra) that we used in Exam-

ple 4.17 and assume that the B-coalgebra satisfies Rule (?). Let x
a(b)
−−−→ y be a tran-

sition and assume c # {a,y,x}. Note that now (b,y) ≈α (c, (b c) · y) by Lemma 3.29.

Now Lemma 4.18 says that we also have the transition x
a(c)
−−−→ (b c) · y.

This is because the transition relation is equivariant, so (b c) · x
a(c)
−−−→ (b c) · y and

(b c) ·x = x, since both b and c are fresh in x. (The proof of the lemma is like this,
but it uses the coalgebra structure instead of the transition relation.)
Note that this shows that the NTS corresponding to this B-coalgebra satisfies
weak alpha-conversion of residuals.

The property stated in Lemma 4.18 can be reformulated for the corresponding nominal
transition system. This way, we easily arrive at the following corollary:
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Corollary 4.20. A nominal transition system corresponding to a B-coalgebra equipped
with some function b : {1, . . . , t} // N that satisfies Rule (?) has weak alpha-conversion
of residuals.

Our main result is now that coalgebras with abstraction are nominal transition systems
satisfying weak alpha-conversion of residuals:

Theorem 4.21 (Main result). There is a bijective correspondence between B̃-coalgebras
and B-coalgebras with some function b : {1, . . . , t} // N satisfying Rule (?).

Corollary 4.22. B̃-coalgebras are nominal transition systems satisfying weak alpha-
conversion of residuals.

Proof (of Theorem 4.21). We correspond between B-coalgebras that satisfy Rule (?) and
B̃-coalgebras with:

B-Coalg
φ

//

ψ
oo B̃-Coalg

(X,g) 7→ (g̃ : x 7→ Vx)
(g : x 7→Wx) ← [ (X, g̃)

where

Vx =
t∐
i=1

{
ι̃L,i(a1, . . . , aki−b(i),〈aki−b(i)+1, . . . , aki 〉y)

∣∣∣ ιL,i(a1, . . . , aki , y) ∈ g(x)
}

Wx =
t∐
i=1

{
ιL,i(a1, . . . , aki−b(i),b1, . . . , bb(i), y

′)
∣∣∣ ι̃L,i(a1, . . . , aki−b(i),〈aki−b(i)+1, . . . , aki 〉y) ∈ g̃(x),

(b1, . . . , bb(i), y
′) ≈α (aki−b(i)+1, . . . , aki , y), {b1, . . . , bb(i)} # {x,a1, . . . , aki−b(i)}

}
The proof can be found in Appendix B.4. We use Lemma 4.18 to show that ψ ◦φ gives
back the same B-coalgebra that satisfies Rule (?) by construction.
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5 Conclusion and Future Work

We summarize the theory we described in Section 4 as follows:

NTSs oo Lem. 4.5 // B-coalgebras

NTSs satisfying
WACR

KS

NTSs satisfying
SACR [6, 24, 1]

3;

gg

''

B-coalgebras
satisfying Rule (?) [7]

Cor. 4.20
dl

KS

66

Thm. 4.21vv

B̃-coalgebras

+3 ... is a subclass of ...
oo // ... corresponds with ...
oo // conjectured correspondence

As we have seen in Section 4.2, one can straightforwardly set up a syntax for a process
calculus as a nominal renaming set that supports name-by-name substitution. The
challenge in constructing nominal transition systems is rather to make sure that a rule
specification for the behaviour induces an equivariant transition relation. Both formats
in [1] and [7] succeed in this regard, but they differ in the way they treat binding names
in the label. It would be perfect if we can make sure that, through the correspondence
of nominal transition systems with coalgebras, name binding in labels is exactly name
abstraction in the endofunctor for the labels of the coalgebra.

Strong Alpha-Conversion of Residuals The format in [1] by Aceto et al. ensures
that the transition system relation is equivariant and that it satisfies ACR (here SACR).
They call it the ACR format and it requires one to recursively define a partial strict strat-
ification function S∗∅ // N on the syntax of processes. The format guarantees that
a specification R induces an equivariant transition relation by defining a permutation
action on rules, and requiring that for every rule Ru in R and every a,b ∈ A, the rule
(a b) ·Ru is also in R.

Furthermore, the format has three constraints to ensure ACR, which can be summa-
rized as follows: there is a substitution γ whose domain only contains terms from the
conclusion source that do not occur anywhere else, such that

(i) after any substitution, fresh names in the conclusion target should also be fresh
in the premise targets;
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(ii) after any substitution, names that are fresh in the conclusion target and in all
premise sources are also fresh in the conclusion source (after applying γ); and

(iii) after any substitution, binding names in premise labels are fresh for the conclu-
sion source (after applying γ).

Using induction, the first two constraints guarantee that, for any transition, a name
that is fresh in the target is also fresh in the source (after applying γ). The third
constraint ensures that, by induction on the strict stratification function, any bound
name indicated by bn is fresh in the conclusion source (after applying γ).

Then, after showing that γ does not change the fact that there exists a proof tree for
the rule (since it only affects irrelevant parts in the conclusion source), with these
constraints in place, (strong) ACR follows.

Note that in this thesis, we made significant assumptions on the structure of the label
set L: their set of labels remains very generic, whereas we, by Assummption 4.2, only
consider a particular structure. This means in particular that we rule out higher order
process calculi, in which processes can be passed around through channels.

Nominal GSOS Format In [7], Staton & Fiore prove that a specification in their for-
mat can be transformed in an abstract rule

ρ : Σ(U ×BU )⇒ BUΣ∗ : NomRn
A →Nom.

This abstract rule will provide an initial transition system that satisfies congruence of
bisimilarity. The B-coalgebra that is part of this bialgebra supports name abstraction,
and they claim that this name abstraction in the coalgebra is equivalent to saying that
binding names are fresh in the source for any transition.

In this thesis, we have proven this claim and made this correspondence explicit by
Theorem 4.21.

To state the constraints of their format requires quite a bit of detailed work. Their most
significant assumption in relation to this thesis is that they assume that any bound
name in the conclusion label is fresh for the conclusion source. This instantly entails
that the coalgebraic structure of the intended transition system satisfies Rule (?).

We have showed that B-coalgebras satisfying Rule (?) are nominal transition systems
satisfying WACR (Corollary 4.20), but we have not shown the converse: it is not clear
wether weak alpha-conversion of residuals implies Rule (?).

Future Work The property of strong alpha-conversion states that if one residual is
the target of a transition from some state x, then the whole equivalence of the residual
must be a target of a transition from x. This easily leads one to conjecture a corre-
spondence between nominal transition systems (under Assumptions 4.2 and 4.16) and
B̃-coalgebras. Although in [1], terms of the system are related to nominal sets, their
theory has not yet been related to coalgebras. Combining the format of Staton & Fiore
[7] with some aspects of Aceto’s format [1], we might obtain NTSs that satisfy SACR
that are also B̃-coalgebras.
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Rule (?) seems to be too strict to encode in the nominal GSOS format [7]. It rules out a

transition x(x) . nil+z〈z〉 . nil
x(z)
−−−→ nil, even though this seems like a perfectly legitimate

transition. It is worthwile to investigate how to potentially alleviate some of the heavy
restrictions of this format.

Although we were unable to find any references on bisimilarity in Nom, the idea that
the greatest bisimulation exists for coalgebras in Nom, i.e., that the filtered colimit of
bisimulations is again a bisimulation, is assumed throughout the literature. This is
something worth investigating.

It is known that M-Set and Nom are Boolean topoi (cartesian closed categories with a
subobject classifier). Still, internal constructions such as the exponent and the power
object are not very well-documented. These can, however, be of great aid in defining,
e.g., a lifting from Nom to NomRn

A for a generalized abstraction endofunctor [5] ([X]Y
rather than

[
Ak

]
X, as we did in Lemma 3.31). This will also be fruitful in potentially

letting go of assumptions on the transition labels for nominal transition systems. Some
work on this has already been done in [8] and [22] (unpublished).
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Appendices

A Category Theory

A.1 Categories, Functors and Natural Transformations

A category C consists of

(i) a class of objects;

(ii) for each two objects X and Y of C a set homC(X,Y ) of morphisms or arrows a :
X // Y , whose domain is X and codomain is Y , sometimes denoted X a // Y ;
and

(iii) a binary operation on arrows called composition that gives an arrow c : X // Z

for each X a // Y b // Z, written c = b ◦ a, or simply c = ba,

such that the following hold:

(1) for every object X of C, there is an identity morphism idX : X // X that satisfies
idX ◦ a = a for all a :W // X and b ◦ idX = b for all b : X // Y , and

(2) composition of morphisms is associative, meaning that we have (c◦b)◦a = c◦(b◦a)
for all W a // X b // Y c // Z.

A category is small if its class of objects is a set. Some authors let homC(X,Y ) be a class
and adopt the above definition, where homC(X,Y ) is a set, for locally small categories.
We are assuming all our categories are locally small.

A functor F from a category C to a category D associates to every object X and mor-
phism a of C an object FX or morphism Fa respectively in D, preserving structure in
the following three ways:

(i) Every morphism c : X // Y of C is associated to a morphism Fc : FX // FY
of D.

(ii) Identity morphisms are preserved, meaning F(idX) = idFX for all objects X of C.

(iii) Composition of morphisms is preserved, meaning that, for all X a // Y b // Z
in C, we have F(ba) = F(b)F(a).

An endofunctor is a functor from a category C to the same category C, e.g., IdC :
C // C.

A natural transformation λ from a functor F : C // D to a functor G : C // D,
written λ : F⇒ G, is a family (class) of morphisms

{λX : FX // GX}X∈C

in D such that for every morphism a : X // Y in C, the naturality condition holds:

λY ◦Fa = Ga ◦λX
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Since the naturality condition is an equality of composed morphisms, one can also for-
mulate this equality by stating that the following diagram of arrows commutes, mean-
ing that the choice of path is irrelevant:

FX

Ff
��

λX // GX

Gf
��

FY
λY // GY

If D is a small category, the class of all functors F : D // C, denoted [D,C], forms a
category, where the morphisms are natural transformations λ : F ⇒ G between func-
tors F,G : D // C.

A.2 Products, Subobjects and Relations

An initial object I of a category C is an object that has exactly one outgoing arrow to
each object X of C. Dually, final or terminal objects have unique incoming arrows from
every object of C.

Example A.1. In Set, a final object is a set {∗}. This codomain forces all functions
to send everything to the single element. The initial object of Set is the empty
set ∅, from which every unique outgoing arrow is the empty function.

Since there is an obvious isomorphism between any existing two initial objects, we
often refer to initial objects up to isomorphism, and call it the initial object, as we do
when referring to final objects as the final object.

A span is a pair of morphisms a : C // A and b : C // B, for which we will write

A C
aoo b // B . Dually, we write A

a // C B
boo for cospans.

Definition A.2. A span X P
π1oo π2 // Y in C is a pullback of a cospan X

f // Z Y
goo

if f ◦ π1 = g ◦ π2 and it satisfies the following universal property: for every span

X W
ρ1oo

ρ2 // Y such that f ◦ρ1 = g ◦ρ2, there is a unique morphism q :W // P

such that ρ1 = π1 ◦ q and ρ2 = π2 ◦ q, i.e., the following diagram commutes:

W !q
//

ρ2

))

ρ1 ++

P π2
//

π1
��

Y

g
��

X
f // Z

A weak pullback is the same as a pullback, but the q :W // P need not be unique.

We say that a functor preserves pullback if we obtain a pullback square after applying
the functor on a pullback square. It preserves weak pullback if we obtain a weak
pullback after applying it to a (weak) pullback square.
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Definition A.3. A product X × Y of two objects X and Y of C is the pullback over the
unique cospan from X and Y to the terminal object T :

X ×Y
π2 //

π1
��

Y

!zY
��

X
!zX // T

Again, if products exist in a category, then they are unique up to isomorphism, and we
refer to a product as the product.

In a completely dual way, one can define the coproduct ‘+’ as the pushout of the unique

span X 0
αXoo αY // Y , which will result in a unique (up to isomorphism) cospan

X
ι1 // X +Y Y

ι2oo .

Example A.4. In Set, the representative of the isomorphism class of products is
given by the Cartesian product X × Y of two sets X and Y containing all pairs
(x,y) where x and y range over X and Y respectively.
A convenient representative of the isomorphism class of pushouts is the disjoint
union of sets, along with the two obvious injections of set inclusion.

Relations R ⊆ X × Y in Set can be thought of as an injection ‘⊂’ from R to X × Y . The
categorical construction for this uses the notion of a monomorphism.

Definition A.5. A morphism f : Y // Z is called a monomorphism (a mono, or monic),

if for any pair of morphisms X
g //

h
// Y the implication f g = f h =⇒ g = h holds.

We write f : Y �
� // Z to indicate that f is monic.

Example A.6. In Set, subset injections i : X
⊂ // Y are monic. Indeed, if for

any two functions f ,g :W // X, we have i(f (w)) = i(g(w)) for all w ∈W , then,
by injectivity, f (w) = g(w) for all w ∈W , and so f = g.

Lemma A.7. Let Y �
� f // Z and X

g // Y be morphisms. If f ◦g is a monomorphism,
then so is g.

Proof. For W
h1 //

h2

// X , assume gh1 = gh2. Then post-compose with f to get f gh1 =

f gh2. Now, since f g is monic, we get h1 = h2, so indeed, g is monic.

Let Mono(X) denote the class of monomorphisms with codomain X. The class can

be equipped with a preorder � as follows: for V
f // X W

goo , f � g if and only
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if there is a morphism h : V // W such that gh = f . The ordering is reflexive by
existence of identity morphisms, and can be shown to be transitive by composing the
existing morphisms h.

This preorder gives rise to an equivalence by letting f w g if and only if f � g and
g � f . Note that the domains of f and g are isomorphic if f w g, since then we have
f = gh1 and g = f h2, so that f = f (h2h1) and g = g(h1h2). Since f and g are monic, h2h1
and h1h2 must be identities.

Finally, to generalize the notion of subset, a subobject D of an object C is an equivalence
class of w of monomorphisms with codomain C. When the monomorphism is clear
from the context, we refer to the object as the subobject, and we often silently pick a
convenient representative of the equivalence class.

Example A.8. In Set, subobject monomorphisms are injections into a set X and
two injections are equivalent if their image is the same. A convenient represen-
tative from this equivalence class is the subset that is this image in X.

Assuming C has a terminal object 1, an object Ω, along with a morphism t : 1 // Ω,

is a subobject classifier if, for any subobject D i // C, there is a unique morphism
χC : C // Ω such that the following square is a pullback diagram:

D //

i
��

1

t
��

C
!χC // Ω

Example A.9. In Set, the subobject classifier is the two-element set Ω = {⊥,>}
with the morphism t picking a truth value: t : ∗ 7→ >. Indeed, if the square above
commutes, for x ∈ C, we have x ∈D if χC(x) => and we have x <D if χC(x) = 0.
The universal property of D being a pullback here means that for any other mor-

phism V
f // C such that χC◦f = t◦!V (the morphism !V : V // 1 is unique),

f factors uniquely through D, which is indeed the situation with subsets.

Set theoretical relations are just subsets of the Cartesian product, which explains the
following definition:

Definition A.10. Assume that C has products, and let X and Y be objects of C. A
relation R between X and Y is a subobject of X × Y . Equivalently, the pairing (π1,π2) :

R // X ×Y of π1 and π2 in the span X R
π1oo π2 // Y is a monomorphism.

When the projections are clear from context, we refer to R itself as the relation.

Example A.11. In Set, takeX = {a,b} and Y = {c,d}. Then X R
π1oo π2 // Y with

R = {(a,c), (a,d)} is a relation in the categorical sense, with obvious projections
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π1 : (x,y) 7→ x and π2 : (x,y) 7→ y.

A.3 Cartesian Closed Categories

In Set, we have the set PX containing all subsets of X. In a general category C, this
is referred to as the power object of an object X. Power objects require the category to
have a terminal object, finite products, a subobject classifier Ω, and finally, an expo-
nent:

Definition A.12. Let Y be an object of a category C with products. A functor (−)Y is
called an exponent functor if it is a right adjoint of the product functor (−)×Y :

(−)×Y a (−)Y

That is, for all objects X and Z of C, we have an isomorphism

homC(X ×Y ,Z)
αX,Z // homC(X,ZY ).

that is natural in X and Z.

The isomorphism α being natural in X and Z means that, if X ′
f // X and Z

g // Z ′

are morphisms in C, then

homC(X ×Y ,Z)
αX,Z //

g◦(−)◦[f ,1Y ]
��

homC(X,ZY )

gY ◦(−)◦f
��

homC(X ′ ×Y ,Z ′)
αX′ ,Z′ // homC(X ′,Z ′Y )

commutes.

Definition A.13. A category C is called Cartesian closed if it has a terminal object and,
for every two objects X,Y , a binary product X ×Y and an exponent XY .

A.4 Monads

Finally, we define the notions of pointed endofunctors, copointed endofunctors and
monads.

Definition A.14. A pointed endofunctor (F,η) consists of a functor F : C // C along
with a unit η : IdC⇒ F.

Dually, we have:

Definition A.15. A copointed endofunctor (F,ε) consists of a functor F : C // C
along with a counit ε : F⇒ IdC.

Pointed endofunctors can be accompanied by a multiplication µ : FF ⇒ F to obtain a
monad:
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Definition A.16. A monad (F,µ,η) consists of a functor F : C // C along with a
multiplication µ : FF⇒ F and a unit η : IdC⇒ F, such that the diagrams

FFFX
FµX //

µFX
��

FFX

µX
��

FFX
µX // FX

FX
FηX //

idFX ##

FFX

µX
��

FX
ηFXoo

idFX||

FX

commute in C for every object X of C.
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B Proofs

B.1 Proof of Lemma 2.22

Lemma. Let Σ be an algebraic signature, and S : Set // Set a functor such that

SX =
∐
f∈Σ

X × . . .×X︸      ︷︷      ︸
]f

The set Σ∗∅ of closed Σ-terms carries an initial S-algebra structure.

Proof. We assume thatΣ contains at least one constant, since otherwise, SΣ∗∅ = Σ∗∅ = ∅,
and all functions are trivial.

Denote the coproduct injections into
∐

f∈Σ(Σ∗∅)]f by ιf.

We let α :
∐

f∈Σ(Σ∗∅)]f // Σ∗∅ be the algebra structure consisting of components αf :
(Σ∗∅)]f // Σ∗∅ defined as follows (we use 1 = {∗} here):

αf :

ιf(∗) 7→ f if ]f = 0,
ιf(e1, . . ., e]f) 7→ f(e1, . . . , e]f) if ]f > 0.

Let (X,σ ) be an S-algebra, and define a function g : Σ∗∅ // X recursively by:

g :

f 7→ σ (ιf,X(∗)) if ]f = 0,
f(e1, . . ., e]f) 7→ σ (ιf,X(g(e1), . . ., g(e]f))) if ]f > 0.

where ιf,X denotes the injection into
∐

f∈ΣX
]f corresponding to f ∈ Σ. Then the diagram

SΣ∗∅
Sg //

α
��

SX

σ
��

Σ∗∅
g // X

commutes, since

(g ◦αf)(ιf(e1, . . . , e]f)) = g(f(e1, . . . , e]f)) = σ (ιf,X(g(e1), . . ., g(e]f))) = (σ ◦ Sg)(ιf(e1, . . . , e]f)),

showing that g is a morphism of S-algebras.

To show uniqueness of g, we recursively define the following functionN : Σ∗∅ // N,
giving the maximum operator depth of a term in Σ∗∅:

N :

f 7→ 0 if ]f = 0,
f(e1, . . ., e]f) 7→ 1 + max

{
N (ei) : i ∈ {1, . . . , ]f}

}
if ]f > 0.

Let g ′ : Σ∗∅ // X be another morphism of S-algebras. We prove that g = g ′, i.e., that
g(f(e1, . . ., e]f)) = g ′(f(e1, . . ., e]f)) for every term f(e1, . . ., e]f) in Σ∗∅, by strong induction on
the maximum operator depth N (f(e1, . . ., e]f)).
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For the base case with N (f) = 0, consisting of all constants f, indeed, we have

g ′(f) = (g ′ ◦αf)(ιf(∗)) = (σ ◦ Sg ′)(ιf(∗)) = σ (ιf,X(∗)) = g(f).

Here, we use that the component of Sg ′ for f is the unique function 1 // 1.

For the induction step, consider a term f(e1, . . . e]f) with operator depth n :=N (f(e1, . . . e]f)).
The induction hypothesis is that, for all terms of operator depths k such that k < n, the
images under g and g ′ are equal. Then, in particular, by definition of N , g(ei) = g ′(ei)
for all i ∈ {1, . . . , ]f}.

g ′(f(e1, . . . e]f)) = (g ′ ◦αf)(ιf(e1, . . . , e]f)) by definition of αf
= (σ ◦ Sg ′)(ιf(e1, . . . , e]f)) algebra morphism g ′

= σ (ιf,X(g ′(e1), . . . , g ′(e]f))) definition of Sg ′

= σ (ιf,X(g(e1), . . . , g(e]f))) I.H.
= (σ ◦ Sg)(ιf(e1, . . . , e]f)) definition of Sg
= (g ◦αf)(ιf(e1, . . . , e]f)) algebra morphism g
= g(f(e1, . . . e]f)) by definition of αf

We conclude that g = g ′ and hence, that α is initial.

69



B.2 Proof of Lemma 3.6

Lemma. For any monoid M, the category M-Set is cartesian closed.

This proof is dedicated to the memory of Harold Simmons, whose unpublished notes
[22] were absolutely indispensable.

Proof. As we already saw, the product is as in set, where the action of M is just point-
wise action on both elements of a pair.

To show thatM-Set is cartesian closed, we should construct an exponent, i.e., for a fixed
M-set Y , we should give a functor (−)Y that is a right adjoint to the product (−)×Y :

(−)×Y a (−)Y .

For this, define, as a set,
ZY := homM-Set(M ×Y ,Z).

In other words, ZY contains all equivariant functions from M × Y to Z. Here, M is an
M-set with action m · n = mn. We equip this set ZY with an action of M by letting, for
f ∈ ZY and m ∈M, m · f = f m, where

f m :M ×Y // Z, (n,y) 7→ (nm,y)

We should check that f m is equivariant: indeed, for n,n′ ∈M and y ∈ Y , we have

n′ · f m(n,y) = n′ · f (nm,y) = f (n′nm,n′y) = f m(n′n,n′y)

where we use that f is equivariant. This indeed defines an action of M on ZY , since
e · f = f for all f ∈ ZY and m · (m′ · f ) = (mm′) · f , since, for all (n,y) ∈M ×Y , we have

(m · (m′ · f ))(n,y) = (m′ · f )(nm,y) = f (nmm′, y) = (mm′ · f )(n,y)

We conclude that ZY is an M-set with the action given by m · f = f m.

The next step is to show that exponentiation defined this way is indeed a right adjoint
to the product. For this, we establish an isomorphism hom(X×Y ,Z) � hom(X,ZY ) that
is natural in X and Z. We let

homM-Set(X ×Y ,Z)
(·)] // homM-Set(X,ZY )
(·)[

oo

by defining, for all f ∈ hom(X ×Y ,Z) and all g ∈ hom(X,ZY ),

f ] : X // ZY , x 7→
(
M ×Y // Z, (m,y) 7→ f (m · x,y)

)
g[ : X ×Y // Z, (x,y) 7→ g(x)(e,y)

Put differently: for all x ∈ X, y ∈ Y , and m ∈M:

f ](x)(m,y) = f (m · x,y) and g[(x,y) = g(x)(e,y)

We want (·)] and (·)[ to be well-defined, so we should check that f ] and g[ are equiv-
ariant functions for all f ,g:
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• If f ] is to be an equivariant function from X to ZY , we should first check that
f ](x) indeed defines an element of ZY , i.e., we should show that f ](x) is an equiv-
ariant function from M ×Y to Z for all x ∈ X. Indeed, for all x ∈ X, m,n ∈M and
y ∈ Y :

n · (f ](x)(m,y)) = n · f (m · x,y) {definition of f ]}
= f (n · (m · x),n · y) {equivariance of f }
= f (nm · x,n · y)
= f ](x)(nm,n · y) {definition of f ]}

So f ](x) is equivariant for all x ∈ X. Finally, note that, for all (m,y) ∈M ×Y ,

(n · f ](x))(m,y) = f ](x)(mn,y) {action of n on f ]}
= f (mn · x,y) {definition of f ]}
= f (m · (n · x), y)
= f ](n · x)(m,y)

Hence, as functions, n · f ](x) and f ](n ·x) are equal. We conclude that f ] is equiv-
ariant.

• Also g[ is equivariant:

m · g[(x,y) =m · (g(x)(e,y)) {definition of g[}
= g(x)(m · e,m · y) {g(x) ∈ ZY is equivariant}
= (m · g(x))(e,m · y) {action of m on g(x) in ZY }
= g(m · x)(e,m · y) {g is equviariant}
= g[(m · x,m · y) {definition of g[}

We conclude that the mappings (·)] and (·)[ are well-defined.

Observe that (f ])[ = f and (g[)] = g: for all x ∈ X, y ∈ Y , and m ∈M, we have

(f ])[(x,y) = f ](x)(e,y) = f (x,y)

and
(g[)

](x)(m,y) = g[(m · x,y) = g(m · x)(e,y) = (m · g(x))(e,y) = g(x)(m,y)

Hence, the mappings (·)] and (·)[ are each other’s inverses and they establish the bijec-
tion hom(X ×Y ,Z) � hom(X,ZY ).

As a final step in showing that exponentiation as we defined is a right adjoint to the
product, we show that this bijection is natural in X and Z. For this, let X ′

a // X and

Z
c // Z ′ be morphisms, and we show that the following two diagrams commutes:

homM-Set(X ×Y ,Z)
(·)] //

c◦(−)◦[a,1Y ]
��

homM-Set(X,ZY )
(·)[

oo

cY ◦(−)◦a
��

homM-Set(X ′ ×Y ,Z ′)
(·)] // homM-Set(X ′,Z ′Y )
(·)[

oo

(12)
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where cY : ZY // Z ′Y , f 7→ c◦f . First, observe that, for all x′ ∈ X ′ and (m,y) ∈M ×Y ,

(c ◦ f ◦ [a,1Y ])](x′)(m,y) = (c ◦ f ◦ [a,1Y ])(m · x′, y) {definition of f ]}
= c(f (a(m · x′), y))
= c(f (m · a(x′), y)) {equivariance of a}
= c(f ](a(x′))(m,y)) {definition of f ]}
= cY (f ](a(x′)))(m,y) {definition of cY }
= (cY ◦ f ] ◦ a)(x′)(m,y)

This shows that, going from left to right, the diagram (12) commutes.

Going the other way, observe that, for all (x′, y) ∈ X ′ ×Y ,

(cY ◦ g ◦ a)[(x′, y) = [cY ◦ g ◦ a](x′)(e,y) {definition of g[}
=

(
cY (g(a(x′)))

)
(e,y)

= c
(
g(a(x′))(e,y)

)
{definition of cY }

= c
(
g[(a(x′), y)

)
{definition of g[}

= (c ◦ g[ ◦ [a,1Y ])(x′, y)

We conclude that (12) commutes both ways, and hence, for any object Y in M-Set:

(−)×Y a (−)Y

Evaluation is now given by ev := (1ZY )[, so ev : ZY ×Y // Z, (f ,y) 7→ f (e,y). Indeed,
the triangle

X ×Y

[f ],1Y ]
��

f

##
ZY ×Y

ev // Z

commutes for any X ×Y
f // Z , since (ev ◦ [f ],1Y ])(x,y) = ev(f ](x), y) = f ](x)(e,y) =

f (x,y).
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B.3 Proof of Proposition 3.8

Proposition. Let X and Y be G-sets. Then we have an isomorphism Y X � homSet(X,Y )
of G-sets.

Proof. We define two equivariant functions Y X
(·)↓ // homSet(X,Y )
(·)↑

oo and show that

they are inverses.

Let k ∈ Y X , so k : G × X // Y is equivariant. Define a function k↓ : X // Y by
k↓(x) = k(e,x). To see that (·)↓ is equivariant, note that, for all g ∈ G and x ∈ X,

(g · k)↓(x) = (g · k)(e,x) {definition of (·)↓}
= k(e · g,x) {action of Y X}
= k(g · e,x) {natural action of G (twice)}
= k(g · e,g · (g−1 · x) {action of X}
= g · k(e,g−1 · x) {equivariance of k}
= g · k↓(g−1 · x) {definition of (·)↓}
= (g · k↓)(x) {action of homSet(X,Y )}

Conversely, let l ∈ homSet(X,Y ) be a function of sets and define l↑ : G ×X // Y by
l↑(g,x) = (g ·l)(x). To see that indeed l↑ ∈ Y X , notice that l↑ is equivariant: for all g,h ∈ G
and x ∈ X,

h · l↑(g,x) = h · (g · l)(x) {definition of (·)↑}
= h · (g · l(g−1 · x)) {action of homSet(X,Y )}
= hg · l(g−1h−1h · x)
= hg · l((hg)−1 · h · x)
= (hg · l)(h · x) {action of homSet(X,Y )}
= l↑(hg,h · x) {definition of (·)↑}
= l↑(h · g,h · x) {natural action of G}

Furthermore, (·)↑ is equivariant, since, for all g,h ∈ G and x ∈ X, we have

(g · l)↑(h,x) = (h · (g · l))(x) {definition of (·)↑}
= (hg · l)(x)
= l↑(hg,x) {definition of (·)↑}
= l↑(h · g,x) {natural action of G}
= (g · l↑)(h,x) {action of Y X}

We have established that Y X
(·)↓ // homSet(X,Y )
(·)↑

oo are equivariant. It remains to

show that they are inverses.

• For k ∈ Y X , let (g,x) ∈ G ×X be arbitrary. Then

(k↓)↑(g,x) = (g · k↓)(x) = g · k↓(g−1 · x) = g · k(e,g−1 · x) = k(g · e,g · g−1 · x) = k(g,x)
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• Conversely, for l ∈ homSet(X,Y ), observe that, for x ∈ X, we have

(l↑)↓(x) = l↑(e,x) = (e · l)(x) = e · l(e−1 · x) = l(x)

Finally, we conclude that Y X � homSet(X,Y ) as G-sets.

74



B.4 Proof of Theorem 4.21

Theorem 4.20. There is a bijective correspondence between B-coalgebras that satisfy
Rule (?) and B̃-coalgebras.

Proof. Recall that a B-coalgebra g is a map X // PfsLX with L =
∐t
i=1Aki ×X, and a

B̃-coalgebra g̃ is a map X // PfsL̃X with L̃ =
∐t
i=1Aki−b(i) ×

[
Ab(i)

]
X.

To relieve us of some notation, we will assume t = 1. Conceptually, the proof can be
easily extended to multiple coproduct terms.

It is also straightforward to generalize from a single binding name to multiple binding
names: just assert freshness conditions over tuples instead of single names. Therefore,
for the purpose of readability, we further assume that there is exactly one binding
name in the single coproduct term. (For coproduct terms where there are no binding
names, the correspondence is trivial.)

With these modifications, writing W = Ak1−1, we have

B̃∗Y = PfsL̃∗Y with L̃∗Y =W × [A]Y

and
B∗Y = PfsL

∗Y with L∗Y =W ×A×Y ,

and Rule (?) becomes

Rule (?∗). Let (g,X) be a B∗-coalgebra. We say that g satisfies Rule (?∗) if

∀(w,b,y,x) ∈W ×A×X ×X . (w,b,y) ∈ g(x) =⇒ b # (w,x)

It will now suffice to demonstrate a bijective correspondence between B∗-coalgebras
that satisfy Rule (?∗) and B̃∗-coalgebras.

The bijection we use is:

B∗-Coalg
φ

//

ψ
oo B̃∗-Coalg

(X,g) 7→ (g̃ : x 7→ {(w,〈b〉y) | (w,b,y) ∈ g(x)})
(g : x 7→ {(w,b′, y′) ≈α (w,b,y) | ←[ (X, g̃)

(w,〈b〉y) ∈ g̃(x),b′ # (w,x)})

So we have φ : B∗-Coalg // B̃∗-Coalg, (X,g) 7→ (X, g̃), where

g̃ : x 7→ {(w,〈b〉y) ∈ L̃X | (w,b,y) ∈ g(x)}

Intuitively, an image of x under g̃ is less dense than the image under g. This is because
we can have (w,〈b〉y) = (w,〈b′〉y′) for many (w,b,y), (w,b′, y′) ∈ g(x).

Note that g̃(x) is finitely supported for every x, since g(x) is, and we claim further-
more that g̃ is equivariant (establishing φ as a well-defined mapping). Indeed, for
π ∈ Pm(A):
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• If z̃ ∈ g̃(π · x), then z̃ = (w,〈b〉y) for some (w,b,y) ∈ g(π · x) = π · g(x). Therefore,
we have some (w′,b′, y′) with (w,b,y) = π · (w′,b′, y′), and (w′,b′, y′) ∈ g(x). Then
(w′,〈b′〉y′) ∈ g̃(x), and therefore

π · (w′,〈b′〉y′) = (π ·w′,〈πb′〉(π · y′)) = (w,〈b〉y) = z̃ ∈ π · g̃(x)

• Conversely, if z̃ ∈ π · g̃(x), then z̃ = π · (w,〈b〉y) for some (w,〈b〉y) ∈ g̃(x), so z̃ =
(π ·w,〈πb〉(π · y)). By definition of g̃, this means that we have some z = (w,b′, y′) ∈
g(x) with (b′, y′) ≈α (b,y). Since g is equivariant, we have π · z = (π ·w,πb′,π · y′) ∈
π · g(x) = g(π · x). By definition of g̃, then,

(π ·w,〈πb′〉(π · y′)) ∈ g̃(π · x)

Since (b′, y′) ≈α (b,y) and by equivariance of≈α, we have (πb′, (π · y′)) ≈α (πb, (π · y)).
But then (π ·w,〈πb′〉(π · y′)) = (π ·w,〈πb〉(π · y)) = z̃, and therefore, z̃ ∈ g̃(π · x).

We conclude that g̃ is equivariant, and therefore a B̃∗-coalgebra structure.

The converse mapping of coalgebras requires a slightly more sophisticated construc-
tion. Indeed, for a coalgebra (X, g̃), we need, for every (w,〈b〉y) ∈ g̃(x), a set of triples
(w,b′, y′), where (b′, y′) ranges over the equivalence class (which is a set) of (b,y).

So define ψ : B̃∗-Coalg // B∗-Coalg, (X, g̃) 7→ (X,g), where

g : x 7→ {(w,b′, y′) ∈ LX | (b′, y′) ≈α (b,y), where (w,〈b〉y) ∈ g̃(x) and b′ # {w,x}}

That is, the image of x under g contains all equivalence classes of the 〈b〉y in g̃(x)
(paired with w), but restricted to those triples where the bound name is fresh in {w,x}.

Once again, we need equivariance of g, so let π ∈ Pm(A).

• If z ∈ g(π · x), then z = (w,b′, y′) where, for some (w,〈b〉y) ∈ g̃(π · x), we have
(b′, y′) ≈α (b,y) and b′ # {w,π · x}. Observe that 〈b〉y = 〈b′〉y′ so (w,〈b′〉y′) ∈ π · g̃(x)
by equivariance of g̃. Let (w′,b′′, y′′) = π−1 · z = π−1 · (w,b′, y′) and note that

(w′,〈b′′〉y′′) ∈ π−1 ·π · g̃(x) = g̃(x) (13)

Furthermore, since # is equivariant, from applying π−1 to b′ # {w,π · x} we obtain
b′′ # {w′,x}. By definition of g, then, (w′,b′′, y′′) ∈ g(x) (use (13) and the fact that
≈α is reflexive). Hence, π · (w′,b′′, y′′) = z ∈ π · g(x).

• Conversely, let z ∈ π·g(x). We can write z = π·(w,b′, y′) and there is (w,〈b〉y) ∈ g̃(x)
such that (b,y) ≈α (b′, y′) and b′ # {w,x}. Note that 〈b〉y = 〈b′〉y′. By equivariance
of #, we have πb′ # {π ·w,π · x}. Furthermore, using equivariance of g̃, we have
that (π ·w,〈πb〉(π · y)) = (π ·w,〈πb′〉(π · y′)) ∈ g̃(π · x). By definition of g, then,
(π ·w,πb′,π · y′) = z ∈ g(π · x), where we use reflexivity of ≈α again.

We conclude that g is a morphism and therefore a B∗-coalgebra. Also observe that g sat-
isfies Rule (?∗) by construction. It remains to show that the two constructed mappings
φ and ψ are inverses of each other.

• Let (X,g) be a B∗-coalgebra satisfying Rule (?∗), and write (X, g̃) = φ((X,g)) and
(X,g ′) = ψ(φ((X,g))). Note that now also g ′ satisfies Rule (?∗). We claim that
(X,g ′) = (X,g). To see this, observe that, for all x ∈ X:
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– If (w,b,y) ∈ g(x), then (w,〈b〉y) ∈ g̃(x). Since (b,y) ≈α (b,y) and b # {w,x}, by
definition of ψ, we also have (w,b,y) ∈ g ′(x).

– Conversely, if (w,b′, y′) ∈ g ′(x) then there is (w,〈b〉y) ∈ g̃(x) such that (b′, y′) ≈α
(b,y) and b′ # {w,x}. But then (w,〈b〉y) = (w,〈b′〉y′) ∈ g̃(x), and, by defini-
tion of φ, this in turn means that there is some (w,b′′, y′′) ∈ g(x) such that
(b′′, y′′) ≈α (b′, y′). Apply Lemma 4.18 to conclude that then (w,b′, y′) ∈ g(x).

We conclude that g(x) = g ′(x) and since x was arbitrary, (X,g) = (X,g ′).

• Now for the reverse composition of φ and ψ, let (X, g̃) be a B̃∗-coalgebra. Define
(X,g) = ψ((X, g̃)) and (X, ĝ) = φ(ψ((X, g̃))). The claim is now that (X, g̃) = (X, ĝ).
Let x ∈ X be arbitrary.

– Let (w,〈b〉y) ∈ g̃(x). Choose some b′ # {w,x} and let y′ = (b b′) · y. Note that
by Lemma 3.29, we have (b,y) ≈α (b′, y′) (in the case that b = b′ as well as
b , b′). Hence, by definition of ψ, we have (w,b′, y′) ∈ g(x). Conclude that
(w,〈b′〉y′) = (w,〈b〉y) ∈ ĝ(x).

– Conversely, if (w,〈b〉y) ∈ ĝ(x), then there is (w,b′, y′) ∈ g(x) such that (b′, y′) ≈α
(b,y) and b′ # {w,x}. By definition of ψ, this in turn means that there is
(w,〈b′′〉y′′) ∈ g̃(x) such that (b′′, y′′) ≈α (b′, y′). But obviously 〈b′′〉y′′ = 〈b〉y,
where we use transitivity of ≈α, and hence, (w,〈b〉y) ∈ g̃(x).

So we see that g̃(x) = ĝ(x), for all x ∈ X. Therefore, (X, g̃) = (X, ĝ) as coalgebras.

Finally, we conclude that φ and ψ establish the bijective correspondence between B∗-
coalgebras satisfying Rule (?∗) and B̃∗-coalgebras.

If we consider b to be tuples of names and let coproduct terms of L and L̃ correspond
naturally, the statement in Theorem 4.21 will follow.
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